虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

电极

电子或电器装置、设备中的一种部件,用做导电介质(固体、气体、真空或电解质溶液)中输入或导出电流的两个端。输入电流的一极叫阳极或正极,放出电流的一极叫阴极或负极。电极有各种类型,如阴极、阳极、焊接电极、电炉电极等。[1]
  • pH传感器模块原理图例程资料

    pH 电极通过 BNC 输出的是 mV 信号,该模块实现信号放大的功能。转换为 0-5V(或者 0-3V,通过电位器调节)。电压读取可以用单片机或者万用表。之后根据标准曲线将输出的电压信号转换为待测溶液的 PH 值。(由于电极个体差异与电位器电阻差异,请务必收到模块后做标准曲线)引脚功能:VCC:5V 电源正输入口 (只能用 5V,不可用 3.3V)GND:电源负输入口P0:pH 模拟量输出口(输出电压范围为 0-5V)蓝色电位器可以调节 P0 口的电压输出值域。2V5:基准 2.5V (可不用)T1:温度输出(插入 18B20 温度传感器后方可使用)输出信号为 18B20 的数字信号,具体数据格式请参考百度。温度补偿功能是通过软件补偿,计算方法为能斯特方程,请参考资料中的硕士论文。(温度对 pH 影响不大,建议非特殊情况下,无需做温度补偿)

    标签: ph传感器模块

    上传时间: 2022-06-13

    上传用户:bluedrops

  • 基于单片机的超声波液位检测系统设计

    一、课题的提出在日常生产生活中,常遇到液位测量及控制问题。比如在一些工业生产自动化系统中对容器中物料位或者液位的测量,又特别是极其恶劣的环境下的测量,比如对具有腐蚀性的液体液位的测量,传统的采用差位分布电极电极法,通过电脉冲去检测液位高度,电极长期处于这种环境中,极易被电解、腐蚀,从而很容易在短时间内就失去灵敏性。显然,在这种检测环境对测试设备的抗腐蚀性要求较高。因此传统的液位测量设备已不能满足现代工业生产的需要。超声波液位检测系统是一种新兴的液位测量系统,它利用了超声波传感技术的原理,采取一种非接触检测方法,能够实现对工业生产自动化系统中液位、物料位等进行检测。此外,超声波具有很好的束射性和方向性,一般也不会对人体造成伤害。基于超声波的检测控制系统具有实施方便、迅速,测量精度高,易于实时控制,所以有非常广阔的应用领域。VA/随着人们生活需求和工业标准的提高,液位检测技术愈来愈受到社会的重视,检测的精度以及实时性要求也愈来愈高,另外还要求检测系统对被检测对象具有自动控制功能。可以说,在现在以及今后的很长一段时间里,液位的检测及控制系统的研究也将依然是一个重要的课题。二、课题的意义为了改善工人的工作环境,降低工人的劳动强度,节省财力、物力,避免资源的浪费,降低工业生产成本,特别是对某些特殊的生产环境,比如:易爆、高温、低温、毒性、腐蚀性、高压、低压、有辐射性、易挥发等液体的液位进行检测,对于这些对身体健康有一定损害的测量环境,不易在实地直接进行测量及控制,而这种新兴的液位测量及控制技术就显得特别的重要。

    标签: 单片机 超声波液位检测系统

    上传时间: 2022-06-17

    上传用户:XuVshu

  • 便携式血糖仪的人机交互研究

    糖尿病被列为世界三大难症之一,危害巨大。而随着人们生活方式和生活环境的改变,糖尿病患者的数量还在不断增多,且呈现年轻化的趋势。由于影响糖尿病病情的因素很多,大部分患者需要进行血糖的自我监控,以达到稳定病情和促进治疗的目的,而便携式血糖仪因其使用便捷而受到广大糖尿病患者的青睐。现有针对便携式血糖仪的研究大多是针对技术层面的,极少有人关注它的软性层面即其在人机交互性方面的发展。本文以人机交互理论为指导,从寻找和研究目标用户、发掘用户的潜在交互需求出发,系统分析和比较了现有便携式血糖仪的使用过程和使用方式,从而了解了其在使用过程中的人机交互情况,并针对现有便携式血糖仪的交互性进行了评估,总结了现有便携式血糖仪在人机交互和人机界面设计方面的优点和问题点,提出了针对便携式血糖仪的交互式设计准则以及在设计上的改进意见,同时还展望了便携式血糖仪在人机交互方面的发展趋势。2.1便携式血糖仪的分类血糖仪自1968年由汤姆·克莱曼斯发明至今,血糖仪经历了不同的技术发展阶段,出现了采血便携血糖仪、动态血糖仪、表式血糖仪等等不同原理的血糖仪,目前广大糖尿病患者大部分购买的都是便携式血糖仪。2.1.1按工作原理分类从工作原理上便携式血糖仪分为两种,一种是光电型,一种是电极型。光电血糖仪有一个光电头,但探测头暴露在空气里,很容易受到污染,影响测试结果,使用寿命比较短,一般在两年之内是比较准确的,两年后需要定期做校准;电极型的测试原理比较科学,电极口内藏,可以避免污染,并且测试的精读比较高,正常使用的情况下,不需要校准,寿命长。2.1.2按测糖方式分类目前市场上常见的血糖仪按照测糖技术可以分为电化学法测试和光反射技术测试两大类。前者是酶与葡萄糖反应产生的电子再运用电流记数设施,读取电子的数量,再转化成葡萄糖浓度读数。后者是通过酶与葡萄糖的反应产生的中间物(带颜色物质),运用检测器检测试纸反射面的反射光的强度,将这些反射光的强度,转化戏葡萄糖浓度

    标签: 便携式血糖仪 人机交互

    上传时间: 2022-06-17

    上传用户:zhanglei193

  • mems血糖传感器的微弱信号检测技术研究

    当人体内胰岛素分泌不足或胰岛素作用缺失时会导致血糖浓度偏离正常水平从而引发糖尿病及其并发症。血糖浓度的检测是糖尿病科学诊断的前提。本文针对课题组研制的MEMS血糖传感器用于组织液超滤提取检测的功能需求,研究了三电极MEMS血糖检测传感器微电流检测技术并研制了传感器检测与控制电路。本文主要对检测原理、电路设计与分析、电路测试以及检控系统葡萄糖浓度测试等部分进行了详细研究。首先对MEMS血糖传感器的检测原理进行分析,对辅助传感器产生电流的电路(恒电位电路和信号发生电路)原理图进行设计,对传感器产生的微电流范围进行实验分析。对传感器工作过程中产生的电化学噪声进行研究,提出噪声消减方法,为后续微电流检测电路的设计奠定基础。然后结合检测微电流输出特点及血糖传感器超滤提取动作控制需求,设计了检控系统,由微电流检测系统、人机交互及无线通信、电源系统三大部分组成。为验证微电流检测系统电路设计的正确性,本文借助Multisim仿真软件重点对电路中的恒电位及1/V转换的性能进行分析。此外对电路中的噪声来源进行分析,计算相关噪声并分析对电流检测的影响。对元件布置与布线、接地、电路板漏电防护等方面进行了研究,从而提高电路的抗干扰能力在检控电路研制基础上,本文搭建测试系统,测试电路的静态和动态特性.静态特性准确度、重复性、灵敏度、分辨力、稳定性、零漂等:动态特性包括恒电位电路的电压跟随特性以及检测电路的阶跃响应和频率响应特性。测试结果表明,该检测系统满足设计指标。最后,为测试葡萄糖浓度,将微电流检控电路与MEMS血糖传感器集成,做葡萄糖浓度的响应实验和重复性实验。在测试结果数据处理基础上,建立了葡萄糖浓度预测模型。测试结果表明,通过预测模型得到的检测结果符合临床检测精度要求。

    标签: mems血糖传感器 微弱信号检测

    上传时间: 2022-06-18

    上传用户:

  • 超声波换能器谐振频率跟踪方法分析.

    超声波是一种能量存在的方式,超声波通过高频的振动作用于水介质,从而产生超声空化效应,这种空化效应已经在超声波清洗中得到应用,或者超声波作用于传声媒介当中,能够引起媒介之间发生不同的效应,已经在基础学科研究和工程应用开发都表示出非常广阔的应用前景[12]。按照超声波研究内容上划分,可以分为功率超声和检测超声两大领域Bl]。检测超声是工业及医学检查的一种方法之一,也被认为是弱超声的“被动应用”,功率超声主要是通过超声接触对接触面进行高频的振动摩擦,以改变介质的一些特性,所以功率超声也被称为“主动应用”[]。本课题主要是针对功率超声波换能器进行研究。超声波的产生主要依靠的是超声波换能器。超声波换能器是一种能够进行机、电能量或者声、电能量转换的器件。对于功率超声换能器而言,换能器通过压电材料的压电效应将输入的高频电能转换成高频振动的机械能量。换能器的种类有很多,应用的领域也不相同,如磁致伸缩超声换能器间,压电陶瓷换能器等等。目前研究最为广泛的是压电陶瓷换能器,压电陶瓷换能器是依靠压电陶瓷的压电效应及逆压电效应来实现能量的转换。压电陶瓷的压电效应是由它的内部结构引起的,压电材料主要有钛酸钡、错钛酸铅、偏锐酸铅、锐酸钾钠、钛酸铅等]。这些电介质在某一恰当的方向施加一定的外力时,会引起内部电极分布状态发生改变,在介质的相对表面上会出现和外力成正比且极性相反的带电电荷,这种由外力引起的电介质的现象叫做压电效应则。相反,若在电介质上某一恰当的方向加上一定强度的外电场时,会引起电介质内部电极分布发生相应的变化,从而产生和外电场强度成正比的应变效应,这种由于外电场引起的电介质的应变现象叫做逆压电效应]。功率超声换能是超声学领域中一个重要的分支学科。本课题主要针对压电陶瓷式功率超声波换能器展开研究。20世纪初期超声波技术开始出现,而我国50年代才开始进行大功率超声的研究[]。随着科学技术的发展特别是电子技术的发展,如单片机、DSP、FPFA等微处理器得快速发展,微处理器功能越来越强大,运算速度越来也快,以及IGBT、MOSFET等功率器件的快速发展,功率器件的容量不断的增加,响应速度不断的提高。对超声波发生器的要求也越来越高,体积越来越小,功能越来越强大,越来越智能,可靠性进一步提高。

    标签: 超声波换能器

    上传时间: 2022-06-18

    上传用户:shjgzh

  • 基于CPLD和VHDL的一种线阵CCD驱动电路的设计

    1引言随着CCD技术的飞速发展,传统的时序发生器实现方法如单片机D口驱动法,EPROM动法,直接数字驱动法等,存在着调试困难、灵活性较差、驱动时钟频率低等缺点,已不能很好地满足CCD应用向高速化,小型化,智能化发展的需要。而可编程逻辑器件CPLD具有了集成度高、速度快、可靠性好及硬件电路易于编程实现等特点,可满足这些需要,而且其与VHDL语言的结合可以更好地解决上述问题,非常适合CCD驱动电路的设计。再加上可编程逻辑器件可以通过软件编程对其硬件的结构和工作方式进行重构,从而使得硬件的设计可以如同软件设计那样方便快捷,本文以东芝公司TCD1702C为例,阐述了利用CPLD技术,在分析其驱动时序关系的基础上,使用VHDL语言实现了CCD驱动的原理和方法。2线阵的工作原理及驱动时序分析TCD1702C为THOSHBA公司生产的一种有效像元数为7500的双沟道二相线阵CCD,其像敏单元尺寸为7um×7um×7um长宽高。中心距亦为7um.最佳工作频率IMHzTCD1702C的原理结构如图1所示。它包括:由存储电极光敏区和电荷转移电极转移栅组成的摄像机构,两个CCD移位寄存器,输出机构和补偿机构四个部分,如图1所示,

    标签: cpld vhdl ccd 驱动电路

    上传时间: 2022-06-23

    上传用户:

  • 全彩OLED屏显示系统的设计

    1引言有要发光二极管(OLED)具有低驱动电压、宽温工作、主动发光、响应速度快和视角宽等优点],其作为全彩显示器件,与LCD相比,具有更简单的工艺和更低的成本。近年,单色和局域色的OLED显示屏已有较多报道~1,并推出了全彩OLED显示屏~9]。本文研制了尺寸为1.9、分辨率为128(×3)×160的全彩OLED屏。在目前报道的同等或以下尺寸的采用无源矩阵(PM)驱动的全彩OLED屏中,该屏的分辨率处于较高水平。2全彩OLED屏2.1全彩技术的实现图1是5种实现全彩OLED显示屏技术的示意图。本文采用(a)所示的平面结构式,每个全彩像素包括红、绿和蓝3个子像素,利用空间混色实现彩色。这种技术的难点是在制作全彩OLED时,需要将红、绿和蓝OLED的发光层(EML)材料分隔开01。屏的最高分辨率不仅受限于机械掩模制作的公差,还受限于在器件制作工艺过程中机械掩模与ITO基板玻璃的对准误差。2.2P-OLED屏的驱动技术OLFD属于电流型器件,其发光亮度与驱动电流成正比,故OLED均采用恒流源驱动。由于OLED自身较高的寄生电容(20~30pF/pixel)和ITO电极引线的电阻(几~几109/口形成的电压降,对恒流源的性能提出了较高的要求,例如可提供高达~30V的电压。为了实现多灰度显示,电流必须可程控。lare公司为了精确控制每个OLED子像素的发光亮度,提出了预充电方案]。根据有无开关和驱动薄膜晶体管的存在,可将矩阵式OLED的驱动可分为P10l和有源矩阵AM112种。PM驱动的显示器件由于制作工艺比AM要简单得多,且成本低廉,故在小尺寸的显示器件上得到了广泛应用。PM驱动电路如图2所示。

    标签: oled

    上传时间: 2022-06-24

    上传用户:

  • 超声波发生器与换能器的匹配设计

    清洗是一种与人们生活实践关系十分密切的劳动,人类从远古时期就开始从事这种劳动。由于传统清洗操作简单,或只是作为一道工序依附于生产过程中,没有引起广泛关注。进入21世纪,人们生活已经从温饱阶段进入到舒适时代,对于清洗产品越来越多的需求,加速了新产品研发步伐;同时,制造业的高速发展,也促进了清洗设备、清洗剂等企业的快速进步。民用、工业两大清洗领域巨大的市场需求,造就了中国清洗行业崭新的未来。清洗可以从不同的角度进行分类,根据清洗范围的不同,目前通常将清洗分为民用清洗和工业清洗两类,近年来,新技术也不断地被应用于清洗技术之中,如随着生物技术的发展,越来越多的酶和微生物在清洗技术中被使用。这利用的是生物化学反应;在空气净化和水处理过程中,活性炭的使用也越来越普及,这利用的是吸附作用,另外,还有电解清洗等,因此,将清洗简单地分为几类,已经不能完全额盖州前病洗技术民速发展的实况com在市场经济的环境下,对产品质量要求越来越高。为保证产品质量,许多企业在产品生产过程中,将采用清洗工艺来提高产品质量,为企业创造良好的经济效益。当前在一些工业产品生产过程中,应用超声波清洗是一种洗净效果好,价格经济,有利于环保的清洗工艺。超声波清洗机可以应用于清洗各式各样体形大小,形状复杂,清洁度要求高的许多工件。例如可用于清洗钟表零件、照相机零件、油咀油泵、汽车发动机零件、精密轴承零件、齿轮、活塞环、铣刀、锯片、宝石、医用注射器及各种光学镜头等;还可以用于清洗印制板、半导体品片及器件、显象管内的精密零件、磁性元件、硅片、陶瓷晶片、插头座、焊片、电极引线等电子类产品。

    标签: 超声波发生器

    上传时间: 2022-06-28

    上传用户:

  • YX12864B液晶模组设计

    该点阵的屏显成本相对较低,适用于各类仪器,小型设备的显示领域。液晶模组使用注意事项1 当您在你的产品设计中使用本液晶模组,注意液晶的视角与你的产品用途相一致。2 液晶屏是玻璃为基础的,跌落或与硬物撞击会引起液晶屏破裂或粉碎。尤其是边角处。3 尽管在液晶表面的偏振片有抑制反光的表层,应当小心不要划伤表面,一般推荐在液晶表面采用透明塑胶材料的保护屏。4 如果液晶模组储藏在低于规定的温度以下,液晶材料会凝结而性能恶化。如果液晶模组储藏在高于规定的温度以上,液晶材料的分子排列方向会转变为液态,可能无法恢复到原来的状态。超出温度和湿度范围,会引起偏振片剥落或起泡。因此,液晶模组应储藏在规定的温度范围。5 如液晶表面遇口水或滴水,应立即擦除,避免长时间过后引起色彩变化或留下污点。水蒸气会引起ITO电极腐蚀。6 如果需要清洁液晶屏表面,应该用棉或软布轻快地擦拭,仍不能清除时,呵气之后再擦拭。7 液晶模组的驱动应遵照规定的额定指标,避免故障及永久损坏。对液晶材料施加直流电压,会引起液晶材料迅速恶化,应该确保提供交流波形的M信号的连续应用。特别是,在电源开关时应遵照供电顺序,避免驱动锁存及直流直接加至液晶屏。

    标签: 液晶模组

    上传时间: 2022-07-18

    上传用户:

  • 三极管8050NPN型晶体三极管

    三极管8050是非常常见的NPN型晶体三极管,在各种放大电路中经常看到它,应用范围很广,主要用于高频放大。也可用作开关电路。类型:开关型;极性:NPN;材料:硅;8050三极管(SOT-23封装)管脚图最大集电极电流(A):0.5 A;直流电增益:10 to 60;功耗:625 mW;最大集电极-发射极电压(VCEO):25; [1] 特征频率:150 MHzPE8050 硅 NPN 30V 1.5A 1.1W3DG8050 硅 NPN 25V 1.5A FT=190 *K2SC8050 硅 NPN 25V 1.5A FT=190 *KMC8050 硅 NPN 25V 700mA 200mW 150MHzCS8050 硅 NPN 25V 1.5A FT=190 *K

    标签: 三极管 npn晶体三极管

    上传时间: 2022-07-18

    上传用户:jason_vip1