论文首先对基本定位算法如基于小区编号、接收信号场 强、到达时间到达时间差、到达角度、混合定 位方法等的原理,误差消除及处理,还有与混合定位方法相关的数据 融合技术进行了简单介绍。随后分析介绍了国内外最新的定位算法及 优化点,如约束极小化定位算法、基于向量机的模式识别定位 算法和指纹定位算法等,优化点有在基于指纹定位方法的基础上考虑 马尔科夫模型,方法基础上考虑功率加权算法,滤波方面考虑滑 动窗技术等。
上传时间: 2017-03-15
上传用户:rocket1122
人脸检测是人脸分析的首要环节,其处理的问题是确认图像(或影像)中是 否存在人脸,如果存在则对人脸进行定位。人脸检测的应用领域相当广泛,是实 现机器智能化的重要步骤之一。 AdaBoost 算法是 1995 年提出的一种快速人脸检测算法,是人脸检测领域里 程碑式的进步,这种算法根据弱学习的反馈,适应性地调整假设的错误率,使在 效率不降低的情况下,检测正确率得到了很大的提高。 本论文第一章和第二章简述了人脸检测的一般情况,第三章对一些人脸检测 的经典方法进行了说明。 第四章讲述了 AdaBoost 算法的发展历史。从 PCA 学习模型到弱学习和强 学习相互关系的论证,再到 Boosting 算法的最终提出,阐述了 Adaptive Boosting 算法的发展脉络。 第五章对影响 AdaBoost 人脸检测训练算法速度的至关重要的两方面:矩形 特征和积分图的概念和理论进行了仔细的阐明。 第六章给出了 AdaBoost 的算法,并深入探讨了其中的一些关键问题——弱 学习器的构造、选取等问题。 最后一章,用编写的实现了 AdaBoost 算法的 FáDèt 程序,给出了相应的 人脸检测实验结果,并和 Viola 等人的结果做了比较。
上传时间: 2018-01-29
上传用户:dragon000008
介绍了数据科学领域常用的所有重要机器学习算法以及TensorFlow和特征工程等相关内容。涵盖的算法包括线性回归、逻辑回归、支持向量机、朴素贝叶斯、K均值、随机森林等,这些算法可以用于监督学习、非监督学习、强化学习或半监督学习。本书在简明扼要地阐明基本原理的基础上,侧重于介绍如何在Python环境下使用机器学习方法库,并通过大量实例清晰形象的展示了不同场景下机器学习方法的应用。
上传时间: 2021-10-21
上传用户:d1997wayne
准确量化和预测陆地生态系统碳水通量对于理解陆气间相互作用,预测未来气候变化和控制温室效应具有重要意义。通量观测和模型模拟是目前研究碳水通量的两种主要方法。通量观测精度较高,但观测范围局限、站点分布不均匀,易受环境影响,难以区域扩展;模型模拟可实现不同尺度参量估算,但由于理想化假设、模型参数和驱动数据等限制,导致其模拟结果往往与真实值存在较大偏差。模型-数据融合方法主要是通过参数估计和数据同化两种技术集成观测和模型信息,建立两者相互制约调节的优化关系,以提高模型结果与真实值之间的匹配程度。基于该思路,本研究在地面观测数据、遥感卫星资料以及相关气候环境数据基础上,重点突破全球动态植被模型(Lund-Potsdam-Jena Dynamic Globa Vegetation Model.LPJ-DGVM)敏感参数优化方法,获取适宜中国的参数化方案:在此基础上,引入数据同化算法,将遥感卫星产品信息与模型相融合,在模拟过程中不断校正原有模型模拟轨迹,提高模型适用性。将以上改进的模型推广至中国区域,实现对20002015年中国地区总初级生产力(Gross Primary Productivity GPP)和敬发(Evapotranspiration,ET的空间格局模拟及分析。主要结论如下1)将LP」DGwM中所选出的22个可调参数(涉及光合、呼吸、水平衡异速生长、死亡、建立以及土壤和掉落物分解共七个作用领域)在各自取值范围内随机获得不同的参数组合,结果表明22个参数可引起GPP和ET模拟结果产生较大的不确定性,尤其集中在生长季。所有站点GPP相对不确定性(Relative Uncertainty,RU)基本保持在09-1.25之间,不具有明显的年际变异性:ET相对不确定性RU月变化趋势明显,且基本处于0.5以下,明显低于GPP,说明所筛选的22个参数对GP模拟产生的影响更为显著。
标签: 数据融合
上传时间: 2022-03-16
上传用户:shjgzh
论文首先研究了基于Har-like特征和Adaboost分类器的目标车辆探测算法原理和参数设置,并利用车载摄像头采集真实道路车辆图像,建立车辆样本数据库,训练车辆分类器,实现对道路车辆的探测,并对探测效果进行量化分析。针对在车辆探测过程中误检率较高、探测不连续以及检测框不稳定的现象,对基于无迹卡尔曼滤波器的车辆跟踪算法进行了研究,建立了车辆相对运动模型,对真实道路交通场景中的多目标车辆进行探测与跟踪,并对跟踪算法对探测性能提升的效果和原因进行了深入分析。在单目测距中,针对一般测距算法受车辆俯仰角和摄像头畸变影响很大的缺点,利用PreScan仿真软件,对车辆测距算法进行了改进,提山了一个同时考虑车辆俯仰角和摄像头畸变等参数的测距模型,以及一种将摄像头内参与外参分开标定的新方法,最后利用场地实验利真实道路交通场景对模型的测距精度、参数灵敏度进行量化分析。研究了仅利用图像信息估算车辆间碰撞时间的方法,利用PreScan仿真软件,对车辆碰撞时间估算算法进行了改进,建立了一个考虑车间相对加速度碰撞时间估算模型,最后,利用真实道路交通视频对算法进行验证和分析。最后,介绍了利用仿真软件辅助ADAS开发的方法,在虚拟的开发环境中建立了以真实摄像头物理参数为依据的摄像头仿真模型、交通场景,实现了对单目测距和碰撞时间估算算法的验证和改进。实验结果表明,论文中所建立的算法表现出良好的性能,所构建的基于PreScan的仿真平台能有效地提高算法的开发效率.
上传时间: 2022-06-21
上传用户:d1997wayne
PID算法及PWM控制技术简介1.1PID算法控制算法是微机化控制系统的一个重要组成部分,整个系统的控制功能主要由控制算法来实现。目前提出的控制算法有很多。根据偏差的比例(P)、积分(ID,微分(D)进行的控制,称为PID控制。实际经验和理论分析都表明,PID控制能够满足相当多工业对象的控制要求,至今仍是一种应用最为广泛的控制算法之一。下面分别介绍模拟PID、数字PID及其参数整定方法。1.1.1模拟PID在模拟控制系统中,调节器最常用的控制规律是PID控制,常规PID控制系统原理框图如图1.1所示,系统由模拟PID调节器、执行机构及控制对象组成。PID调节器是一种线性调节器,它根据给定值r(1)与实际输出值c(1)构成的控制偏差:e()=r(t)-c(t)(1.1)将偏差的比例、积分、微分通过线性组合构成控制量,对控制对象进行控制,故称为PID调节器。在实际应用中,常根据对象的特征和控制要求,将P、I、D基本控制规律进行适当组合,以达到对被控对象进行有效控制的目的。例如,P调节器,PI调节器,PID调节器等。模拟PID调节器的控制规律为
上传时间: 2022-07-01
上传用户:
本书介绍了压力传感器、圆环力敏传感器、氧传感器、有机蒸气传感器及其输出的非线性信号,因传感器是将输人的非电量转化为电学量的元件,要求将测得的电学量反演输出并显示为非电量,以达到测量的最终目的,这就要依靠除经典算法以外的各种先进的算法.例如规范化多项式拟合法、输人-输出的归十算法、模拟退火算法、遗传算法、蚁群算法、量子粒子群算法、神经网络算法、模糊算法才能完成反演转换。本书重点就是结合实际应用介绍这些算法,书中有的算法是本书作者独创的。此外本书还介绍了不同非线性信号的自然和强制融合过程、从而可实现传感器的补偿,以提高其测量精度。
上传时间: 2022-07-05
上传用户:qingfengchizhu
高度数据的准确获取是飞控系统研制过程中极其重要的一环,是保证无人飞行器按照一定高程工作、平稳着陆的先决条件。但对于低成本惯性导航解算,位置漂移严重[],虽可通过加速度计姿态校正来抑制部分漂移,但解算出的速度与位置仍然不准确。因此需利用除惯导外的其它传感器测量值作为位置观测量参与滤波,在抑制位置漂移的情况下,修正速度与加速度,提高高程数据的精度。目前文献中大多是将惯性导航作为一个整体,对惯导的三维位置及速度进行滤波。如SINS/GPS组合导航,通过组合导航对SINS速度及位置漂移进行抑制[2][3]。但是当只需要高度方向上的数据时,此种做法往往计算量大,步骤繁琐,且整体滤波兼顾经度、纬度、高程等多个因素,反而影响了高度方向的滤波效果,且当SINS/GPS组合导航中的GPS信号较差时,得到的高度观测量误差也大。可见,当单一的高度传感器观测数据出现异常时,滤波后的高度也会出现异常。针对单传感器无法适应复杂工作环境的缺点,本文结合GPS、气压计及惯导系统的优点,来抑制惯导高度方向上的发散。通过构建GPS与气压计数据的权重模型获得高度方向观测量,使用互补滤波算法融合惯导数据与求得的观测量得到更为精确的高度观测值。算法简易,鲁棒性好,可在嵌入式飞控板中实时运行。
上传时间: 2022-07-16
上传用户:
解析深度学习:语音识别实践》是首部介绍语音识别中深度学习技术细节的专著。全书首先概要介绍了传统语音识别理论和经典的深度神经网络核心算法。接着全面而深入地介绍了深度学习在语音识别中的应用,包括“深度神经网络-隐马尔可夫混合模型”的训练和优化,特征表示学习、模型融合、自适应,以及以循环神经网络为代表的若干先进深度学习技术。
上传时间: 2022-07-24
上传用户:qdxqdxqdxqdx
本次毕业论文的内容主要包括两个方面:(1)确定基于肤色特征的人脸识别算法流程并实现MATLAB仿真.根据目前已有的人脸识别算法和学过的有关图像处理知识确定出适合本次论文的最优算法,确定算法时的重点是将肤色判断作为人脸检测的预处理,即研究肤色模型的选取和建立、肤色分割的方法以及人脸区域的获得;再根据面部特征提取出人脸的大致框架,通过人脸面积、高宽比、欧拉数等来判断每块区域是否为人脸,最后得到图片中人脸的比较精确的位置。在确定算法时就应该要综合考虑各方面的因素,要尽可能的提高人脸识别的时间效率,提高识别率。(2)设计出GUI界面,实现人脸识别功能。MATLAB/GUI自带了很多工具箱函数,方便快捷。设计好的GUI界面只需通过鼠标等简洁的方式与计算机交换信息,选择想要运行的程序,实现快速识别。本次设计的GUT界面有窗口、光标、按键、菜单、文字说明等对象(Object),主要包含读入图像,转换颜色空间,皮肤概率图像,皮肤二值化和定位五个部分,其中使用了开关按钮(ToggleButton)、静态文本框(Static Text)、坐标系(Axes)和面板(Pane1)按钮,要对其进行合理布局,注意回调函数的嵌入。在设计过程中要熟悉MATLAB编程环境,注意控件的选用和参数设置,会根据设计要求对GUI界面进行布局,注意回调函数的编写,以达到理想的效果。该系统可以较好的实现单人脸识别,能较准确的对其进行定位。但对于多人组和背景较复杂的图像,会出现漏检和错检的现象,需要进一步改进。
上传时间: 2022-07-28
上传用户:qdxqdxqdxqdx