特点: 精确度0.1%满刻度 可作各式數學演算式功能如:A+B/A-B/AxB/A/B/A&B(Hi or Lo)/|A|/ 16 BIT类比输出功能 输入与输出绝缘耐压2仟伏特/1分钟(input/output/power) 宽范围交直流兩用電源設計 尺寸小,穩定性高
上传时间: 2014-12-23
上传用户:ydd3625
特点(FEATURES) 精确度0.1%满刻度 (Accuracy 0.1%F.S.) 可作各式数学演算式功能如:A+B/A-B/AxB/A/B/A&B(Hi or Lo)/|A| (Math functioA+B/A-B/AxB/A/B/A&B(Hi&Lo)/|A|/etc.....) 16 BIT 类比输出功能(16 bit DAC isolating analog output function) 输入/输出1/输出2绝缘耐压2仟伏特/1分钟(Dielectric strength 2KVac/1min. (input/output1/output2/power)) 宽范围交直流两用电源设计(Wide input range for auxiliary power) 尺寸小,稳定性高(Dimension small and High stability)
上传时间: 2013-11-24
上传用户:541657925
/*--------- 8051内核特殊功能寄存器 -------------*/ sfr ACC = 0xE0; //累加器 sfr B = 0xF0; //B 寄存器 sfr PSW = 0xD0; //程序状态字寄存器 sbit CY = PSW^7; //进位标志位 sbit AC = PSW^6; //辅助进位标志位 sbit F0 = PSW^5; //用户标志位0 sbit RS1 = PSW^4; //工作寄存器组选择控制位 sbit RS0 = PSW^3; //工作寄存器组选择控制位 sbit OV = PSW^2; //溢出标志位 sbit F1 = PSW^1; //用户标志位1 sbit P = PSW^0; //奇偶标志位 sfr SP = 0x81; //堆栈指针寄存器 sfr DPL = 0x82; //数据指针0低字节 sfr DPH = 0x83; //数据指针0高字节 /*------------ 系统管理特殊功能寄存器 -------------*/ sfr PCON = 0x87; //电源控制寄存器 sfr AUXR = 0x8E; //辅助寄存器 sfr AUXR1 = 0xA2; //辅助寄存器1 sfr WAKE_CLKO = 0x8F; //时钟输出和唤醒控制寄存器 sfr CLK_DIV = 0x97; //时钟分频控制寄存器 sfr BUS_SPEED = 0xA1; //总线速度控制寄存器 /*----------- 中断控制特殊功能寄存器 --------------*/ sfr IE = 0xA8; //中断允许寄存器 sbit EA = IE^7; //总中断允许位 sbit ELVD = IE^6; //低电压检测中断控制位 8051
上传时间: 2013-10-30
上传用户:yxgi5
《AVR单片机原理及应用》详细介绍了ATMEL公司开发的ATmega8系列高速嵌入式单片机的硬件结构、工作原理、指令系统、接口电路、C编程实例,以及一些特殊功能的应用和设计,对读者掌握和使用其他ATmega8系列的单片机具有极高的参考价值 AVR单片机原理及应用》具有较强的系统性和实用性,可作为有关工程技术人员和硬件工程师的应用手册,亦可作为高等院校自动化、计算机、仪器仪表、电子等专业的教学参考书。 目录 第1章 绪论 1.1 AVR单片机的主要特性 1.2 主流单片机系列产品比较 1.2.1 ATMEL公司的单片机 1.2.2 Mkcochip公司的单片机 1.2.3 Cygnal公司的单片机 第2章 AVR系统结构概况 2.1 AVR单片机ATmega8的总体结构 2.1.1 ATmega8特点 2.1.2 结构框图 2.1.3 ATmega8单片机封装与引脚 2.2 中央处理器 2.2.1 算术逻辑单元 2.2.2 指令执行时序 2.2.3 复位和中断处理 2.3 ATmega8存储器 2.3.1 Flash程序存储器 2.3.2 SRAM 2.3.3 E2pROM 2.3.4 I/O寄存器 2.3.5 ATmega8的锁定位、熔丝位、标识位和校正位 2.4 系统时钟及其分配 2.4.1 时钟源 2.4.2 外部晶振 2.4.3 外部低频石英晶振 2.4.4 外部:RC振荡器 2.4.5 可校准内部.RC振荡器 2.4.6 外部时钟源 2.4.7 异步定时器/计数器振荡器 2.5 系统电源管理和休眠模式 2.5.1 MCU控制寄存器 2.5.2 空闲模式 2.5.3 ADC降噪模式 2.5.4 掉电模式 2.5.5 省电模式 2.5.6 等待模式 2.5.7 最小功耗 2.6 系统复位 2.6.1 复位源 2.6.2 MCU控制状态寄存器——MCUCSR 2.6.3 内部参考电压源 2.7 I/O端口 2.7.1 通用数字I/O端口 2.7.2 数字输入使能和休眠模式 2.7.3 端口的第二功能 第3章 ATmega8指令系统 3.1 ATmega8汇编指令格式 3.1.1 汇编语言源文件 3.1.2 指令系统中使用的符号 3.1.3 ATmega8指令 3.1.4 汇编器伪指令 3.1.5 表达式 3.1.6 文件“M8def.inc” 3.2 寻址方式和寻址空间 3.3 算术和逻辑指令 3.3.1 加法指令 3.3.2 减法指令 3.3.3 取反码指令 3.3.4 取补码指令 3.3.5 比较指令 3.3.6 逻辑与指令 3.3.7 逻辑或指令 3.3.8 逻辑异或 3.3.9 乘法指令 3.4 转移指令 3.4.1 无条件转移指令 3.4.2 条件转移指令 3.4.3 子程序调用和返回指令 3.5 数据传送指令 3.5.1 直接寻址数据传送指令 3.5.2 间接寻址数据传送指令 3.5.3 从程序存储器中取数装入寄存器指令 3.5.4 写程序存储器指令 3.5.5 I/0端口数据传送 3.5.6 堆栈操作指令 3.6 位操作和位测试指令 3.6.1 带进位逻辑操作指令 3.6.2 位变量传送指令 3.6.3 位变量修改指令 3.7 MCU控制指令 3.8 指令的应用 第4章 中断系统 4.1 外部向量 4.2 外部中断 4.3 中断寄存器 第5章 自编程功能 5.1 引导加载技术 5.2 相关I/O寄存器 5.3 Flash程序存储器的自编程 5.4 Flash自编程应用 第6章 定时器/计数器 6.1 定时器/计数器预定比例分频器 6.2 8位定时器/计数器O(T/CO) 6.3 16位定时器/计数器1(T/C1) 6.3.1 T/C1的结构 6.3.2 T/C1的操作模式 6.3.3 T/121的计数时序 6.3.4 T/C1的寄存器 6.4 8位定时器/计数器2(T/C2) 6.4.1 T/C2的组成结构 6.4.2 T/C2的操作模式 6.4.3 T/C2的计数时序 6.4.4 T/02的寄存器 6.4.5 T/C2的异步操作 6.5 看门狗定时器 第7章 AVR单片机通信接口 7.1 AVR单片机串行接口 7.1.1 同步串行接口 7.1.2 通用串行接口 7.2 两线串行TWT总线接口 7.2.1 TWT模块概述 7.2.2 TWT寄存器描述 7.2.3 TWT总线的使用 7.2.4 多主机系统和仲裁 第8章 AVR单片机A/D转换及模拟比较器 8.1 A/D转换 8.1.1 A/D转换概述 8.1.2 ADC噪声抑制器 8.1.3 ADC有关的寄存器 8.2 AvR单片机模拟比较器 第9章 系统扩展技术 9.1 串行接口8位LED显示驱动器MAX7219 9.1.1 概述 9.1.2 引脚功能及内部结构 9.1.3 操作说明 9.1.4 应用 9.1.5 软件设计 9.2 AT24C系列两线串行总线E2PPOM 9.2.1 概述 9.2.2 引脚功能及内部结构 9.2.3 操作说明 9.2.4 软件设计 9.3 AT93C46——三线串行总线E2PPOM接口芯片 9.3.1 概述 9.3.2 内部结构及引脚功能 9.3.3 操作说明 9.3.4 软件设计 9.4 串行12位的ADCTL543 9.4.1 概述 9.4.2 内部结构及引脚功能 9.4.3 操作说明 9.4.4 AD620放大器介绍 9.4.5 软件设计 9.5 串行输出16位ADCMAXl95 9.5.1 概述 9.5.2 引脚功能及内部结构 9.5.3 操作说明 9.5.4 应用 9.5.5 软件设计 9.6 串行输入DACTLC5615 9.6.1 概述 9.6.2 引脚功能及内部结构 9.6.3 操作说明 9.6.4 软件设计 9.7 串行12位的DACTLC5618 9.7.1 概述 9.7.2 内部结构及引脚功能 9.7.3 操作说明 9.7.4 软件设计 9.8 串行非易失性静态RAMX24C44 9.8.1 概述 9.8.2 引脚功能及内部结构 9.8.3 操作说明 9.8.4 软件设计 9.9 数据闪速存储器AT45DB041B 9.9.1 概述 9.9.2 引脚功能及内部结构 9.9.3 操作说明 9.9.4 软件设计 9.10 GM8164串行I/0扩展芯片 9.10.1 概述 9.10.2 引脚功能说明 9.10.3 操作说明 9.10.4 软件设计 9.11 接口综合实例 附录1 ICCACR简介 附录2 ATmega8指令表 参考文献
上传时间: 2013-10-29
上传用户:lanwei
TLC2543是TI公司的12位串行模数转换器,使用开关电容逐次逼近技术完成A/D转换过程。由于是串行输入结构,能够节省51系列单片机I/O资源;且价格适中,分辨率较高,因此在仪器仪表中有较为广泛的应用。 TLC2543的特点 (1)12位分辩率A/D转换器; (2)在工作温度范围内10μs转换时间; (3)11个模拟输入通道; (4)3路内置自测试方式; (5)采样率为66kbps; (6)线性误差±1LSBmax; (7)有转换结束输出EOC; (8)具有单、双极性输出; (9)可编程的MSB或LSB前导; (10)可编程输出数据长度。 TLC2543的引脚排列及说明 TLC2543有两种封装形式:DB、DW或N封装以及FN封装,这两种封装的引脚排列如图1,引脚说明见表1 TLC2543电路图和程序欣赏 #include<reg52.h> #include<intrins.h> #define uchar unsigned char #define uint unsigned int sbit clock=P1^0; sbit d_in=P1^1; sbit d_out=P1^2; sbit _cs=P1^3; uchar a1,b1,c1,d1; float sum,sum1; double sum_final1; double sum_final; uchar duan[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f}; uchar wei[]={0xf7,0xfb,0xfd,0xfe}; void delay(unsigned char b) //50us { unsigned char a; for(;b>0;b--) for(a=22;a>0;a--); } void display(uchar a,uchar b,uchar c,uchar d) { P0=duan[a]|0x80; P2=wei[0]; delay(5); P2=0xff; P0=duan[b]; P2=wei[1]; delay(5); P2=0xff; P0=duan[c]; P2=wei[2]; delay(5); P2=0xff; P0=duan[d]; P2=wei[3]; delay(5); P2=0xff; } uint read(uchar port) { uchar i,al=0,ah=0; unsigned long ad; clock=0; _cs=0; port<<=4; for(i=0;i<4;i++) { d_in=port&0x80; clock=1; clock=0; port<<=1; } d_in=0; for(i=0;i<8;i++) { clock=1; clock=0; } _cs=1; delay(5); _cs=0; for(i=0;i<4;i++) { clock=1; ah<<=1; if(d_out)ah|=0x01; clock=0; } for(i=0;i<8;i++) { clock=1; al<<=1; if(d_out) al|=0x01; clock=0; } _cs=1; ad=(uint)ah; ad<<=8; ad|=al; return(ad); } void main() { uchar j; sum=0;sum1=0; sum_final=0; sum_final1=0; while(1) { for(j=0;j<128;j++) { sum1+=read(1); display(a1,b1,c1,d1); } sum=sum1/128; sum1=0; sum_final1=(sum/4095)*5; sum_final=sum_final1*1000; a1=(int)sum_final/1000; b1=(int)sum_final%1000/100; c1=(int)sum_final%1000%100/10; d1=(int)sum_final%10; display(a1,b1,c1,d1); } }
上传时间: 2013-11-19
上传用户:shen1230
#include<iom16v.h> #include<macros.h> #define uint unsigned int #define uchar unsigned char uint a,b,c,d=0; void delay(c) { for for(a=0;a<c;a++) for(b=0;b<12;b++); }; uchar tab[]={ 0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90,
上传时间: 2013-10-21
上传用户:13788529953
在16MHZ频率下速度为16MIPS的8位RISC结构单片机,内含硬件乘法器。 支持JTAG端口仿真和编程,仿真效果比传统仿真同更真实有效。 8通道10位AD转换器,支持单端和双端差分信号输入,内带增益可编程运算放大器。 16K字节的FLASH存贮器,支持ISP、IAP编程,使系统开发、生产、维护更容易。 多达1K字节的SRAM,32个通用寄存器,三个数据指针,使用C语言编程更容易。 512字节的EEPROM存贮器,可以在系统掉电时保存您的重要数据。 多达20个中断源,每个中断有独立的中断向量入口地址。 2个8位定时/计数器,1个16位定时/计数器,带捕捉、比较功能,有四个通道的PWM。 硬件USART、SPI和基于字节处理的I2C接口。 杰出的电气性能,超强的抗干扰能力。每个IO口可负载40mA的电流,总电流不超过200mA。 可选片内/片外RC振荡、石英/陶瓷晶振、外部时钟,更具备实时时钟(RTC)功能;片内RC振荡可达8MHZ,频率可校调到1%精度;片外晶振振荡幅度可调,以改善EMI性能。 内置模拟量比较器。 可以用熔丝开启、带独立振荡器的看门狗,看门狗溢出时间分8级可调。 内置上电复位电路和可编程低电压检测(BOD)复位电路。 六种睡眠模式,给你更低的功耗和更灵活的选择。 ATMEGA16L工作电压2.7V-5.5V,工作频率0-8MHZ;ATMEGA16工作电压4.5-5.5V,工作频率0-16MHZ。 32个IO口,DIP40、TQFP44封装。 与其它8位单片机相比,有更高的程序安全性,保护您的知识产权。
上传时间: 2013-11-22
上传用户:wcl168881111111
许多AVR使用者特别是AVR初学者,在使用AVR单片机的过程中,或多或少的都遇到过AVR单片机在设置熔丝位后突然不能使用的情况,笔者在最初使用AVR单片机的时候,也遇到过类似的情况.这个情况,多半是我们常说的"假死"状态,也就是说,单片机不是真正的坏了,而是由于设置熔丝位后导致的假死状态.
上传时间: 2013-11-23
上传用户:fang2010
说明:适用于没用烧写ATmega8并行编程器的朋友,初用ATmega8的工程师常常在串行编程时写错熔丝位,及加密位,造成不能再串行编程的不便,没并行编程将无法再使用,本人就是因此才特花两天时间做了一个简易的并行编程器(很简单,用万能板搭焊即可),将的芯片加密位及熔丝恢复出厂默认值恢复串行编程。
上传时间: 2013-11-07
上传用户:牧羊人8920
MSP430F413实现的智能遥控器设计:MSP430F413 单片机是TI 公司最近推出的超低功耗混合信号16 位单片机系列中的一种。它采用16 位精简指令系统,125ns 指令周期,大部分的指令在一个指令周期内完成,16 位寄存器和常数发生器,发挥了最高的代码效率,而且片内含有硬件乘法器,大大节省运算的时间。该芯片采用低功耗设计,具有五种低功耗模式,供电电压范围为1.8~3.6V,在工作模式下:2.2 伏工作电压1MHz 工作频率时电流为225uA;在待机模式电流为0.7uA;掉电模式(RAM 数据保持不变)电流为0.1uA。所以特别适用长期使用电池工作的场合。它采用数字控制振荡器(DCO),使得从低功耗模式到唤醒模式的转换时间小于6us。该芯片具有8KB+256B Flash Memory,256B RAM,采用串行在线编程方式,为用户编译程序和控制参数提供灵活的空间,内部的安全保密熔丝可使程序不必非法复制。此外,MSP430F413 具有强大的中断功能,48 个通用I/O 引脚,96 段LCD 驱动器,一个16 位定时器,这样提高了对外围设备的开发能力。
上传时间: 2013-11-08
上传用户:bruce5996