摘要:文中分析了功率因数校正的必要性,对有源功率因数校正主电路拓扑做了对比分析,确定本文选用无桥拓扑。分析了无桥PFC电路的原理和优缺点,可以看到无桥电路具有开关器件少,功耗低,成本小,电路体积小的优点。在控制方案选择单周期控制,并采用Malab Simulink仿真平台建立仿真模型,通过仿真表明,单周期控制的无桥PFC达到功率因数提高的目的。关键词:功率因教校正;无桥;单周期;Matlab随着电力电子技术的发展,电网中整流器、开关电源等非线性负载不断增加。这些存在冲击性的用电设备,将引起网侧输人电流发生严重畸变,产生大量造波污染,导致电网功率因数过低,所以提高功率因数势在必行"早期功率因数校正采用在整流器后加滤波电感电容实现,功率因数一般只有0.6左右;在20世纪90年代,有源功率因数校正(APFC)产生,是在整流器和负载之间接入一个DC/DC开关变换器,应用电流反馈技术,使输入端电流波形跟踪交流输入正弦电压波形,可以使输入电流波形接近正弦,功率因数可提高到0.99以上。由于该方案采用了有源器件,故称为有源功率因数校正APFC1有源功率因数校正主电路拓扑1.1 传统Boost拓扑传统Boost PFC电路由整流桥和PFC组成,如图1所示。传统Boost PFC电路工作时通过控制开关管的动作,采用反馈来控制电流波形,这样可以使交流网侧输入电流跟踪输入交流电压而接近正弦波,来提高功率因数。但其流通路径有3个半导体工作,当变换器功率和开关频率提高时,系统的系统通态损耗明显增加,整体效率低29
上传时间: 2022-06-17
上传用户:
三相可控整流电路的控制量可以很大,输出电压脉动较小,易滤波,控制滞后时间短,因此在工业中几乎都是采用三相可控整流电路。在电子设备中有时也会遇到功率较大的电源,例如几百瓦甚至超过1-2kw的电源,这时为了提高变压器的利用率,减小波纹系数,也常采用三相整流电路。另外由于三相半波可控整流电路的主要缺点在于其变压器二次侧电流中含有直流分量,为此在应用中较少。而采用三相桥式全挖整流电路,可以有效的避免直流磁化作用。实际中,由于三相相控桥式整流电路输出电压脉动小、脉动频率高、网侧功率因数高以及动态响应快,在中、大功率领域中获得了广泛应用,但是三相半波相控整流电路是基础,其分析方法对研究其他整流电路非常有益。
上传时间: 2022-06-22
上传用户:
图1是最经典的电路,优点是可以在电阻R5上并联滤波电容.电阻匹配关系为R1=R2,R4=R5=2R3;可以通过更改R5来调节增益当Ui>O时,分析各点电压正负关系可知D1截止,D2导通,R1,R2和A1构成了反向比例运算器,增益为-1,R4,R3,R5和A2构成了反向求和电路,通过R4的支路的增益为-1,通过R3支路的增益为2,等效框图如下:当Ui<0时,分析各点电压的正负关系可知,D1导通,D2截止,A1的作用导致R2左端电压钳位在0V,A2的反馈导致R3右端电压钳位在0V,所以R2、R3支路两端电位相等,无电流通过,R4,R5和A2构成反向比例运算器,增益为-1,输入阻抗仍为R1R4。因此,此电路的输出等于输入的绝对值。此电路的优点:输入阻抗恒等于R1IR4,输入阻抗低,调节R5可调节此电路的增益大小,在R5上并联电容可实现滤波功能。此电路适用低频电路,当频率大时,输出电压产生偏移,且输入电压接近0V时,输出电压失真,二极管的选型也非常重要,需选导通压降大些的。输入信号小时,也会影响最终输出。
标签: 精密整流电路
上传时间: 2022-06-25
上传用户:qdxqdxqdxqdx
显示器电路原理与维修
上传时间: 2013-04-15
上传用户:eeworm
电路分析基础课件 PPT版
标签: 电路分析基础
上传时间: 2013-04-15
上传用户:eeworm
通信原理(高频电子电路课件) PPT版
上传时间: 2013-04-15
上传用户:eeworm
基本电路理论 上海交大精品课件(陈洪亮版) PPT版
上传时间: 2013-07-20
上传用户:eeworm
通信原理 高频电子电路CAI ppt版
上传时间: 2013-04-15
上传用户:eeworm
光电技术实用电路精选
上传时间: 2013-06-18
上传用户:eeworm
实用遥控电路原理与设计速成
上传时间: 2013-07-21
上传用户:eeworm