虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

温度定时巡检系统

  • c8051f040/c8051f041/c8051f042/

    C8051F040/1/2/3/4/5/6/7混合信号ISP FLASH 微控制器数 据 手 册 C8051F04x 系列器件是完全集成的混合信号片上系统型MCU,具有64 个数字I/O 引脚(C8051F040/2/4/6)或32 个数字I/O 引脚(C8051F041/3/5/7),片内集成了一个CAN2.0B 控制器。下面列出了一些主要特性;有关某一产品的具体特性参见表1.1。􀁹 高速、流水线结构的8051 兼容的CIP-51 内核(可达25MIPS)􀁹 控制器局域网(CAN2.0B)控制器,具有32 个消息对象,每个消息对象有其自己的标识􀁹 全速、非侵入式的在系统调试接口(片内)􀁹 真正12 位(C8051F040/1)或10 位(C8051F042/3/4/5/6/7)、100 ksps 的ADC,带PGA 和8 通道模拟多路开关􀁹 允许高电压差分放大器输入到12/10 位ADC(60V 峰-峰值),增益可编程􀁹 真正8 位500 ksps 的ADC,带PGA 和8 通道模拟多路开关(C8051F040/1/2/3)􀁹 两个12 位DAC,具有可编程数据更新方式(C8051F040/1/2/3)􀁹 64KB(C8051F040/1/2/3/4/5)或32KB(C8051F046/7)可在系统编程的FLASH 存储器􀁹 4352(4K+256)字节的片内RAM􀁹 可寻址64KB 地址空间的外部数据存储器接口􀁹 硬件实现的SPI、SMBus/ I2C 和两个UART 串行接口􀁹 5 个通用的16 位定时器􀁹 具有6 个捕捉/比较模块的可编程计数器/定时器阵列􀁹 片内看门狗定时器、VDD 监视器和温度传感器具有片内VDD 监视器、看门狗定时器和时钟振荡器的C8051F04x 系列器件是真正能独立工作的片上系统。所有模拟和数字外设均可由用户固件使能/禁止和配置。FLASH 存储器还具有在系统重新编程能力,可用于非易失性数据存储,并允许现场更新8051 固件。片内JTAG 调试电路允许使用安装在最终应用系统上的产品MCU 进行非侵入式(不占用片内资源)、全速、在系统调试。该调试系统支持观察和修改存储器和寄存器,支持断点、观察点、单步及运行和停机命令。在使用JTAG 调试时,所有的模拟和数字外设都可全功能运行。每个MCU 都可在工业温度范围(-45℃到+85℃)工作,工作电压为2.7 ~ 3.6V。端口I/O、/RST和JTAG 引脚都容许5V 的输入信号电压。C8051F040/2/4/6 为100 脚TQFP 封装(见图1.1 和图1.3的框图)。C8051F041/3/5/7 为64 脚TQFP 封装(见图1.2 和图1.4 的框图)。

    标签: 8051 040 041 042

    上传时间: 2013-10-24

    上传用户:hwl453472107

  • cygnal单片机教程

    C8051Fxxx 系列单片机是完全集成的混合信号系统级芯片,具有与8051 兼容的微控制器内核,与MCS-51 指令集完全兼容。除了具有标准8052 的数字外设部件之外,片内还集成了数据采集和控制系统中常用的模拟部件和其它数字外设及功能部件。参见表1.1 的产品选择指南可快速查看每个MCU 的特性。 MCU 中的外设或功能部件包括模拟多路选择器、可编程增益放大器、ADC、DAC、电压比较器、电压基准、温度传感器、SMBus/ I2C、UART、SPI、可编程计数器/定时器阵列(PCA)、定时器、数字I/O 端口、电源监视器、看门狗定时器(WDT)和时钟振荡器等。所有器件都有内置的FLASH 程序存储器和256 字节的内部RAM,有些器件内部还有位于外部数据存储器空间的RAM,即XRAM。C8051Fxxx 单片机采用流水线结构,机器周期由标准的12 个系统时钟周期降为1 个系统时钟周期,处理能力大大提高,峰值性能可达25MIPS。C8051Fxxx 单片机是真正能独立工作的片上系统(SOC)。每个MCU 都能有效地管理模拟和数字外设,可以关闭单个或全部外设以节省功耗。FLASH 存储器还具有在系统重新编程能力,可用于非易失性数据存储,并允许现场更新8051 固件。应用程序可以使用MOVC 和MOVX 指令对FLASH 进行读或改写,每次读或写一个字节。这一特性允许将程序存储器用于非易失性数据存储以及在软件控制下更新程序代码。片内JTAG 调试支持功能允许使用安装在最终应用系统上的产品MCU 进行非侵入式(不占用片内资源)、全速、在系统调试。该调试系统支持观察和修改存储器和寄存器,支持断点、单步、运行和停机命令。在使用JTAG 调试时,所有的模拟和数字外设都可全功能运行。每个MCU 都可在工业温度范围(-45℃到+85℃)内用2.7V-3.6V(F018/019 为2.8V-3.6V)的电压工作。端口I/O、/RST 和JTAG 引脚都容许5V 的输入信号电压。

    标签: cygnal 单片机教程

    上传时间: 2013-11-14

    上传用户:jiangshandz

  • MCS-51 单片机的系统扩展问题

    本章主要介绍51系列单片机系统扩展问题,在本章中要研究较多的硬件方面及硬软结合方面的问题,本章与第一章关系密切,在学习本章内容之前,要先明确51系列单片机本身的系统资源,可先复习一下前面几章的有关单片机硬件组成方面的内容。 本章将介绍以下具体内容:    系统扩展的含义、单片机的地址总线和数据总线、常见系统扩展电路举例。§7.0  前言         1.系统扩展的含义    单片机中虽然已经集成了CPU、I/O口、定时器、中断系统、存储器等计算机的基本部件(即系统资源),但是对一些较复杂应用系统来说有时感到以上资源中的一种或几种不够用,这就需要在单片机芯片外加相应的芯片、电路,使得有关功能得以扩充,我们称为系统扩展(即系统资源的扩充)。    2.系统扩展分类----单一功能的扩展                  综合功能的扩展3.系统扩展需要解决的问题----    单片机与相应芯片的接口电路连接(即地址总线、数据总线、控制总线的连接)与编程。4.单片机的地址总线和数据总线    51系列单片机没有专用的对外地址总线和数据总线,其P0口和P2口既是通用I/O口,同时P0口还是分时复用的双向数据总线和低8位地址总线(一般需要加一级锁存器),而P2口则是高8位地址总线5.常见系统扩展电路(1)单一功能的系统扩展     存储器的扩展(程序存储器、数据存储器、E2PROM )     外部中断源的扩展(简单门电路)     并行口的扩展(8155)(2)综合功能的扩展     外部RAM、定时器、并行口扩展(8155)     存储器、并行口、定时器扩展(多芯片)7.1.1 程序存储器的扩展.程序存储器的作用----存放程序代码或常数表格  .扩展时所用芯片----一般用只读型存储器芯片(可以是EPROM、E2PROM、 FLASH芯片等)。  .扩展电路连接 ---- 用EPROM 2764扩展程序存储器。  .存储器地址分析----究竟单片机输出什么地址值时,可以指向存储器中的某一单元。

    标签: MCS 51 单片机 系统扩展

    上传时间: 2013-10-19

    上传用户:zhaoq123

  • 单片机应用系统抗干扰技术

    单片机应用系统抗干扰技术:第1章 电磁干扰控制基础. 1.1 电磁干扰的基本概念1 1.1.1 噪声与干扰1 1.1.2 电磁干扰的形成因素2 1.1.3 干扰的分类2 1.2 电磁兼容性3 1.2.1 电磁兼容性定义3 1.2.2 电磁兼容性设计3 1.2.3 电磁兼容性常用术语4 1.2.4 电磁兼容性标准6 1.3 差模干扰和共模干扰8 1.3.1 差模干扰8 1.3.2 共模干扰9 1.4 电磁耦合的等效模型9 1.4.1 集中参数模型9 1.4.2 分布参数模型10 1.4.3 电磁波辐射模型11 1.5 电磁干扰的耦合途径14 1.5.1 传导耦合14 1.5.2 感应耦合(近场耦合)15 .1.5.3 电磁辐射耦合(远场耦合)15 1.6 单片机应用系统电磁干扰控制的一般方法16 第2章 数字信号耦合与传输机理 2.1 数字信号与电磁干扰18 2.1.1 数字信号的开关速度与频谱18 2.1.2 开关暂态电源尖峰电流噪声22 2.1.3 开关暂态接地反冲噪声24 2.1.4 高速数字电路的EMI特点25 2.2 导线阻抗与线间耦合27 2.2.1 导体交直流电阻的计算27 2.2.2 导体电感量的计算29 2.2.3 导体电容量的计算31 2.2.4 电感耦合分析32 2.2.5 电容耦合分析35 2.3 信号的长线传输36 2.3.1 长线传输过程的数学描述36 2.3.2 均匀传输线特性40 2.3.3 传输线特性阻抗计算42 2.3.4 传输线特性阻抗的重复性与阻抗匹配44 2.4 数字信号传输过程中的畸变45 2.4.1 信号传输的入射畸变45 2.4.2 信号传输的反射畸变46 2.5 信号传输畸变的抑制措施49 2.5.1 最大传输线长度的计算49 2.5.2 端点的阻抗匹配50 2.6 数字信号的辐射52 2.6.1 差模辐射52 2.6.2 共模辐射55 2.6.3 差模和共模辐射比较57 第3章 常用元件的可靠性能与选择 3.1 元件的选择与降额设计59 3.1.1 元件的选择准则59 3.1.2 元件的降额设计59 3.2 电阻器60 3.2.1 电阻器的等效电路60 3.2.2 电阻器的内部噪声60 3.2.3 电阻器的温度特性61 3.2.4 电阻器的分类与主要参数62 3.2.5 电阻器的正确选用66 3.3 电容器67 3.3.1 电容器的等效电路67 3.3.2 电容器的种类与型号68 3.3.3 电容器的标志方法70 3.3.4 电容器引脚的电感量71 3.3.5 电容器的正确选用71 3.3.6 电容器使用注意事项73 3.4 电感器73 3.4.1 电感器的等效电路74 3.4.2 电感器使用的注意事项74 3.5 数字集成电路的抗干扰性能75 3.5.1 噪声容限与抗干扰能力75 3.5.2 施密特集成电路的噪声容限77 3.5.3 TTL数字集成电路的抗干扰性能78 3.5.4 CMOS数字集成电路的抗干扰性能79 3.5.5 CMOS电路使用中注意事项80 3.5.6 集成门电路系列型号81 3.6 高速CMOS 54/74HC系列接口设计83 3.6.1 54/74HC 系列芯片特点83 3.6.2 74HC与TTL接口85 3.6.3 74HC与单片机接口85 3.7 元器件的装配工艺对可靠性的影响86 第4章 电磁干扰硬件控制技术 4.1 屏蔽技术88 4.1.1 电场屏蔽88 4.1.2 磁场屏蔽89 4.1.3 电磁场屏蔽91 4.1.4 屏蔽损耗的计算92 4.1.5 屏蔽体屏蔽效能的计算99 4.1.6 屏蔽箱的设计100 4.1.7 电磁泄漏的抑制措施102 4.1.8 电缆屏蔽层的屏蔽原理108 4.1.9 屏蔽与接地113 4.1.10 屏蔽设计要点113 4.2 接地技术114 4.2.1 概述114 4.2.2 安全接地115 4.2.3 工作接地117 4.2.4 接地系统的布局119 4.2.5 接地装置和接地电阻120 4.2.6 地环路问题121 4.2.7 浮地方式122 4.2.8 电缆屏蔽层接地123 4.3 滤波技术126 4.3.1 滤波器概述127 4.3.2 无源滤波器130 4.3.3 有源滤波器138 4.3.4 铁氧体抗干扰磁珠143 4.3.5 贯通滤波器146 4.3.6 电缆线滤波连接器149 4.3.7 PCB板滤波器件154 4.4 隔离技术155 4.4.1 光电隔离156 4.4.2 继电器隔离160 4.4.3 变压器隔离 161 4.4.4 布线隔离161 4.4.5 共模扼流圈162 4.5 电路平衡结构164 4.5.1 双绞线在平衡电路中的使用164 4.5.2 同轴电缆的平衡结构165 4.5.3 差分放大器165 4.6 双绞线的抗干扰原理及应用166 4.6.1 双绞线的抗干扰原理166 4.6.2 双绞线的应用168 4.7 信号线间的串扰及抑制169 4.7.1 线间串扰分析169 4.7.2 线间串扰的抑制173 4.8 信号线的选择与敷设174 4.8.1 信号线型式的选择174 4.8.2 信号线截面的选择175 4.8.3 单股导线的阻抗分析175 4.8.4 信号线的敷设176 4.9 漏电干扰的防止措施177 4.10 抑制数字信号噪声常用硬件措施177 4.10.1 数字信号负传输方式178 4.10.2 提高数字信号的电压等级178 4.10.3 数字输入信号的RC阻容滤波179 4.10.4 提高输入端的门限电压181 4.10.5 输入开关触点抖动干扰的抑制方法181 4.10.6 提高器件的驱动能力184 4.11 静电放电干扰及其抑制184 第5章 主机单元配置与抗干扰设计 5.1 单片机主机单元组成特点186 5.1.1 80C51最小应用系统186 5.1.2 低功耗单片机最小应用系统187 5.2 总线的可靠性设计191 5.2.1 总线驱动器191 5.2.2 总线的负载平衡192 5.2.3 总线上拉电阻的配置192 5.3 芯片配置与抗干扰193 5.3.1去耦电容配置194 5.3.2 数字输入端的噪声抑制194 5.3.3 数字电路不用端的处理195 5.3.4 存储器的布线196 5.4 译码电路的可靠性分析197 5.4.1 过渡干扰与译码选通197 5.4.2 译码方式与抗干扰200 5.5 时钟电路配置200 5.6 复位电路设计201 5.6.1 复位电路RC参数的选择201 5.6.2 复位电路的可靠性与抗干扰分析202 5.6.3 I/O接口芯片的延时复位205 5.7 单片机系统的中断保护问题205 5.7.1 80C51单片机的中断机构205 5.7.2 常用的几种中断保护措施205 5.8 RAM数据掉电保护207 5.8.1 片内RAM数据保护207 5.8.2 利用双片选的外RAM数据保护207 5.8.3 利用DS1210实现外RAM数据保护208 5.8.4 2 KB非易失性随机存储器DS1220AB/AD211 5.9 看门狗技术215 5.9.1 由单稳态电路实现看门狗电路216 5.9.2 利用单片机片内定时器实现软件看门狗217 5.9.3 软硬件结合的看门狗技术219 5.9.4 单片机内配置看门狗电路221 5.10 微处理器监控器223 5.10.1 微处理器监控器MAX703~709/813L223 5.10.2 微处理器监控器MAX791227 5.10.3 微处理器监控器MAX807231 5.10.4 微处理器监控器MAX690A/MAX692A234 5.10.5 微处理器监控器MAX691A/MAX693A238 5.10.6 带备份电池的微处理器监控器MAX1691242 5.11 串行E2PROM X25045245 第6章 测量单元配置与抗干扰设计 6.1 概述255 6.2 模拟信号放大器256 6.2.1 集成运算放大器256 6.2.2 测量放大器组成原理260 6.2.3 单片集成测量放大器AD521263 6.2.4 单片集成测量放大器AD522265 6.2.5 单片集成测量放大器AD526266 6.2.6 单片集成测量放大器AD620270 6.2.7 单片集成测量放大器AD623274 6.2.8 单片集成测量放大器AD624276 6.2.9 单片集成测量放大器AD625278 6.2.10 单片集成测量放大器AD626281 6.3 电压/电流变换器(V/I)283 6.3.1 V/I变换电路..283 6.3.2 集成V/I变换器XTR101284 6.3.3 集成V/I变换器XTR110289 6.3.4 集成V/I变换器AD693292 6.3.5 集成V/I变换器AD694299 6.4 电流/电压变换器(I/V)302 6.4.1 I/V变换电路302 6.4.2 RCV420型I/V变换器303 6.5 具有放大、滤波、激励功能的模块2B30/2B31305 6.6 模拟信号隔离放大器313 6.6.1 隔离放大器ISO100313 6.6.2 隔离放大器ISO120316 6.6.3 隔离放大器ISO122319 6.6.4 隔离放大器ISO130323 6.6.5 隔离放大器ISO212P326 6.6.6 由两片VFC320组成的隔离放大器329 6.6.7 由两光耦组成的实用线性隔离放大器333 6.7 数字电位器及其应用336 6.7.1 非易失性数字电位器x9221336 6.7.2 非易失性数字电位器x9241343 6.8 传感器供电电源的配置及抗干扰346 6.8.1 传感器供电电源的扰动补偿347 6.8.2 单片集成精密电压芯片349 6.8.3 A/D转换器芯片提供基准电压350 6.9 测量单元噪声抑制措施351 6.9.1 外部噪声源的干扰及其抑制351 6.9.2 输入信号串模干扰的抑制352 6.9.3 输入信号共模干扰的抑制353 6.9.4 仪器仪表的接地噪声355 第7章 D/A、A/D单元配置与抗干扰设计 7.1 D/A、A/D转换器的干扰源357 7.2 D/A转换原理及抗干扰分析358 7.2.1 T型电阻D/A转换器359 7.2.2 基准电源精度要求361 7.2.3 D/A转换器的尖峰干扰362 7.3 典型D/A转换器与单片机接口363 7.3.1 并行12位D/A转换器AD667363 7.3.2 串行12位D/A转换器MAX5154370 7.4 D/A转换器与单片机的光电接口电路377 7.5 A/D转换器原理与抗干扰性能378 7.5.1 逐次比较式ADC原理378 7.5.2 余数反馈比较式ADC原理378 7.5.3 双积分ADC原理380 7.5.4 V/F ADC原理382 7.5.5 ∑Δ式ADC原理384 7.6 典型A/D转换器与单片机接口387 7.6.18 位并行逐次比较式MAX 118387 7.6.28 通道12位A/D转换器MAX 197394 7.6.3 双积分式A/D转换器5G14433399 7.6.4 V/F转换器AD 652在A/D转换器中的应用403 7.7 采样保持电路与抗干扰措施408 7.8 多路模拟开关与抗干扰措施412 7.8.1 CD4051412 7.8.2 AD7501413 7.8.3 多路开关配置与抗干扰技术413 7.9 D/A、A/D转换器的电源、接地与布线416 7.10 精密基准电压电路与噪声抑制416 7.10.1 基准电压电路原理417 7.10.2 引脚可编程精密基准电压源AD584418 7.10.3 埋入式齐纳二极管基准AD588420 7.10.4 低漂移电压基准MAX676/MAX677/MAX678422 7.10.5 低功率低漂移电压基准MAX873/MAX875/MAX876424 7.10.6 MC1403/MC1403A、MC1503精密电压基准电路430 第8章 功率接口与抗干扰设计 8.1 功率驱动元件432 8.1.1 74系列功率集成电路432 8.1.2 75系列功率集成电路433 8.1.3 MOC系列光耦合过零触发双向晶闸管驱动器435 8.2 输出控制功率接口电路438 8.2.1 继电器输出驱动接口438 8.2.2 继电器—接触器输出驱动电路439 8.2.3 光电耦合器—晶闸管输出驱动电路439 8.2.4 脉冲变压器—晶闸管输出电路440 8.2.5 单片机与大功率单相负载的接口电路441 8.2.6 单片机与大功率三相负载间的接口电路442 8.3 感性负载电路噪声的抑制442 8.3.1 交直流感性负载瞬变噪声的抑制方法442 8.3.2 晶闸管过零触发的几种形式445 8.3.3 利用晶闸管抑制感性负载的瞬变噪声447 8.4 晶闸管变流装置的干扰和抑制措施448 8.4.1 晶闸管变流装置电气干扰分析448 8.4.2 晶闸管变流装置的抗干扰措施449 8.5 固态继电器451 8.5.1 固态继电器的原理和结构451 8.5.2 主要参数与选用452 8.5.3 交流固态继电器的使用454 第9章 人机对话单元配置与抗干扰设计 9.1 键盘接口抗干扰问题456 9.2 LED显示器的构造与特点458 9.3 LED的驱动方式459 9.3.1 采用限流电阻的驱动方式459 9.3.2 采用LM317的驱动方式460 9.3.3 串联二极管压降驱动方式462 9.4 典型键盘/显示器接口芯片与单片机接口463 9.4.1 8位LED驱动器ICM 7218B463 9.4.2 串行LED显示驱动器MAX 7219468 9.4.3 并行键盘/显示器专用芯片8279482 9.4.4 串行键盘/显示器专用芯片HD 7279A492 9.5 LED显示接口的抗干扰措施502 9.5.1 LED静态显示接口的抗干扰502 9.5.2 LED动态显示接口的抗干扰506 9.6 打印机接口与抗干扰技术508 9.6.1 并行打印机标准接口信号508 9.6.2 打印机与单片机接口电路509 9.6.3 打印机电磁干扰的防护设计510 9.6.4 提高数据传输可靠性的措施512 第10章 供电电源的配置与抗干扰设计 10.1 电源干扰问题概述513 10.1.1 电源干扰的类型513 10.1.2 电源干扰的耦合途径514 10.1.3 电源的共模和差模干扰515 10.1.4 电源抗干扰的基本方法516 10.2 EMI电源滤波器517 10.2.1 实用低通电容滤波器518 10.2.2 双绕组扼流圈的应用518 10.3 EMI滤波器模块519 10.3.1 滤波器模块基础知识519 10.3.2 电源滤波器模块521 10.3.3 防雷滤波器模块531 10.3.4 脉冲群抑制模块532 10.4 瞬变干扰吸收器件532 10.4.1 金属氧化物压敏电阻(MOV)533 10.4.2 瞬变电压抑制器(TVS)537 10.5 电源变压器的屏蔽与隔离552 10.6 交流电源的供电抗干扰方案553 10.6.1 交流电源配电方式553 10.6.2 交流电源抗干扰综合方案555 10.7 供电直流侧抑制干扰措施555 10.7.1 整流电路的高频滤波555 10.7.2 串联型直流稳压电源配置与抗干扰556 10.7.3 集成稳压器使用中的保护557 10.8 开关电源干扰的抑制措施559 10.8.1 开关噪声的分类559 10.8.2 开关电源噪声的抑制措施560 10.9 微机用不间断电源UPS561 10.10 采用晶闸管无触点开关消除瞬态干扰设计方案564 第11章 印制电路板的抗干扰设计 11.1 印制电路板用覆铜板566 11.1.1 覆铜板材料566 11.1.2 覆铜板分类568 11.1.3 覆铜板的标准与电性能571 11.1.4 覆铜板的主要特点和应用583 11.2 印制板布线设计基础585 11.2.1 印制板导线的阻抗计算585 11.2.2 PCB布线结构和特性阻抗计算587 11.2.3 信号在印制板上的传播速度589 11.3 地线和电源线的布线设计590 11.3.1 降低接地阻抗的设计590 11.3.2 减小电源线阻抗的方法591 11.4 信号线的布线原则592 11.4.1 信号传输线的尺寸控制592 11.4.2 线间串扰控制592 11.4.3 辐射干扰的抑制593 11.4.4 反射干扰的抑制594 11.4.5 微机自动布线注意问题594 11.5 配置去耦电容的方法594 11.5.1 电源去耦595 11.5.2 集成芯片去耦595 11.6 芯片的选用与器件布局596 11.6.1 芯片选用指南596 11.6.2 器件的布局597 11.6.3 时钟电路的布置598 11.7 多层印制电路板599 11.7.1 多层印制板的结构与特点599 11.7.2 多层印制板的布局方案600 11.7.3 20H原则605 11.8 印制电路板的安装和板间配线606 第12章 软件抗干扰原理与方法 12.1 概述607 12.1.1 测控系统软件的基本要求607 12.1.2 软件抗干扰一般方法607 12.2 指令冗余技术608 12.2.1 NOP的使用609 12.2.2 重要指令冗余609 12.3 软件陷阱技术609 12.3.1 软件陷阱609 12.3.2 软件陷阱的安排610 12.4 故障自动恢复处理程序613 12.4.1 上电标志设定614 12.4.2 RAM中数据冗余保护与纠错616 12.4.3 软件复位与中断激活标志617 12.4.4 程序失控后恢复运行的方法618 12.5 数字滤波619 12.5.1 程序判断滤波法620 12.5.2 中位值滤波法620 12.5.3 算术平均滤波法621 12.5.4 递推平均滤波法623 12.5.5 防脉冲干扰平均值滤波法624 12.5.6 一阶滞后滤波法626 12.6 干扰避开法627 12.7 开关量输入/输出软件抗干扰设计629 12.7.1 开关量输入软件抗干扰措施629 12.7.2 开关量输出软件抗干扰措施629 12.8 编写软件的其他注意事项630 附录 电磁兼容器件选购信息632

    标签: 单片机 应用系统 抗干扰技术

    上传时间: 2013-10-20

    上传用户:xdqm

  • 基于FPGA的温度模糊控制器的实现

    在FPGA平台上实现了一种温度模糊控制器,首先对模糊控制系统的思想和工作原理进行了分析,然后使用Quartus ii和modelsim对整个系统进行设计和仿真,最后在FPGA中实现。结果表明,该模糊控制系统设计可行,并可应用到工业控制中。

    标签: FPGA 温度 模糊控制器

    上传时间: 2014-12-28

    上传用户:kernor

  • PLC电梯控制系统的设计和检测

      摘要: 随着微电子技术和计算机技术的迅速发展,PLC(即可编程控制器)在工业控制领域内得到十分广泛地应用。PLC是一种基于数字计算机技术、专为在工业环境下应用而设计的电子控制装置,它采用可编程序的存储器,用来存储用户指令,通过数字或模拟的输入/输出,完成一系列逻辑、顺序、定时、记数、运算等确定的功能,来控制各种类型的机电一体化设备和生产过程。本文介绍了利用可编程控制器编写的一个五层电梯的控制系统,检验电梯PLC控制系统的运行情况。实践证明,PLC可遍程控制器和MCGS组态软件结合有利于PLC控制系统的设计、检测,具有良好的应用价值。   电梯是随着高层建筑的兴建而发展起来的一种垂直运输工具。多层厂房和多层仓库需要有货梯;高层住宅需要有住宅梯;百货大楼和宾馆需要有客梯,自动扶梯等。在现代社会,电梯已像汽车、轮船一样,成为人类不可缺少的交通运输工具。据统计,美国每天乘电梯的人次多于乘载其它交通工具的人数。当今世界,电梯的使用量已成为衡量现代化程度的标志之一。追溯电梯这种升降设备的历史,据说它起源于公元前236年的古希腊。当时有个叫阿基米德的人设计出--人力驱动的卷筒式卷扬机。1858年以蒸汽机为动力的客梯,在美国出现,继而有在英国出现水压梯。1889年美国的奥梯斯电梯公司首先使用电动机作为电梯动力,这才出现名副其实的电梯,并使电梯趋于实用化。1900年还出现了第一台自动扶梯。1949年出现了群控电梯,首批4~6台群控电梯在纽约的联合国大厦被使用。1955年出现了小型计算机(真空管)控制电梯。1962年美国出现了速度达8米/秒的超高速电梯。1963年一些先进工业国只成了无触点半导体逻辑控制电梯。1967年可控硅应用于电梯,使电梯的拖动系统筒化,性能提高。1971年集成电路被应用于电梯。第二年又出现了数控电梯。1976年微处理机开始用于电梯,使电梯的电气控制进入了一个新的发展时期。   1电梯简介   1.1电梯的基本分类   1.1.1按用途分类   ⑴ 乘客电梯:为运送乘客而设计的电梯。主用与宾馆,饭店,办公楼,大型商店等客流量大的场合。这类电梯为了提高运送效率,其运行速度比较快,自动化程度比较高。轿厢的尺寸和结构形式多为宽度大于深度,使乘客能畅通地进出。而且安全设施齐全,装潢美观。

    标签: PLC 电梯控制系统 检测

    上传时间: 2013-11-18

    上传用户:yuanyuan123

  • 基于FPGA的射频热疗系统的设计

    采用高精度数字温度传感器DS18B20与可编程逻辑器件FPGA实现温度测量与控制,并进行温度场的测量与控制实验。实验表明,一维控制器控制精度不够,温度超调比较大(1 ℃),而二维控制器的温度超调就比较小(0.5 ℃)。因此,所设计的射频温度场温度测量与控制的方法满足热疗要求。与传统方法相比,该系统具有设计灵活、现场可编程、调试简单和体积小等特点。

    标签: FPGA 射频热疗

    上传时间: 2013-11-20

    上传用户:wwwe

  • 基于RFID的电力温度监控系统的软件分析与设计

    在分析和比较现有电力测温技术的基础上,从标签的选用和读卡器的设计两方面介绍了一种新型的射频监控系统的设计方案,重点介绍了系统在Window CE操作系统下的软件功能的设计,并给出了系统软件设计的整体流程图。

    标签: RFID 电力 温度监控系统

    上传时间: 2013-11-18

    上传用户:ouyang426

  • 基于Web服务器的电网监控系统的设计

    基于三星公司的ARM11芯片S3c6410和可剪裁可移植的Linux操作系统,搭配51单片机构建嵌入式Web服务器,实现对电网的监控。该系统可实现多路电网欠压、过压状态的判定,并实时地采集环境画面和温度,采用TCP/IP通信协议连接到远程计算机上,实现了在远程计算机利用Web页面的方式动态显示电网状态、温度和环境画面等信息的功能。

    标签: Web 服务器 电网监控系统

    上传时间: 2014-12-29

    上传用户:Altman

  • 基于nRF2401的藏区蔬菜大棚管理系统的设计与实现

    蔬菜大棚在西藏的蔬菜供应中起着不可或缺的作用,为方便农户对蔬菜大棚的管理,使蔬菜大棚在藏区得到广泛的推广,文中结合nRF2401无线传输[1]和SPCE061A单片机[2]实现了藏区蔬菜大棚管理系统的设计。本项目通过SPCE061A单片机控制相关传感器进行蔬菜大棚内温度、二氧化碳浓度等指标采集,然后将采集的数据通过nRF2401进行传输;后台中心将接收的前台数据在LCD上实时显示出来,并当指标超过了适宜值时,系统便会对农户进行语音提示。本文设计的藏区蔬菜大棚管理系统具有监测灵敏、可操作性强、藏汉双语界面显示、双语报警等优点。

    标签: 2401 nRF 大棚管理系统

    上传时间: 2013-10-22

    上传用户:yuzhou229843982