该文档为基于双目视觉绿色作物视频流的深度图FPGA实现讲解文档,是一份很不错的参考资料,具有较高参考价值,感兴趣的可以下载看看………………
标签: fpga
上传时间: 2022-04-15
上传用户:
MATLAB深度学习简介深度学习是机器学习的一个类型,该类型的模型直接从图像、文本或声音中学 习执行分类任务。通常使用神经网络架构实现深度学习。“深度”一词是指网络 中的层数 — 层数越多,网络越深。传统的神经网络只包含 2 层或 3 层, 而深度网络可能有几百层。下面只是深度学习发挥作用的几个例子:• 无人驾驶汽车在接近人行横道线时减速。• ATM 拒收假钞。• 智能手机应用程序即时翻译国外路标。深度学习特别适合鉴别应用场景,比如人脸辨识、 文本翻译、语音识别以及高级驾驶辅助系统(包括 车道分类和交通标志识别)。简言之,精确。先进的工具和技术极大改进了深度学习算法,达到了 很高的水平,在图像分类上能够超越人类,能打败世界最优秀的围棋 选手,还能实现语音控制助理功能,如 Amazon Echo® 和 Google Home,可用来查找和下载您喜欢的新歌。如果您刚接触深度学习,快速而轻松的入门方法是使用现有网络, 比如 AlexNet,用一百多万张图像训练好的 CNN。AlexNet 最常用于 图像分类。它可将图像划分为 1000 个不同的类别,包括键盘、鼠标、 铅笔和其他办公设备,以及各个品种的狗、猫、马和其他动物。
标签: Matlab
上传时间: 2022-06-10
上传用户:
【资源描述】:双目深度图获取,感觉挺好的
标签: matlab
上传时间: 2022-06-16
上传用户:wangshoupeng199
两本C语言资料,作为硬件开发工程师,非常好的工具书。C和指针、C语言深度剖析
标签: C语言
上传时间: 2022-06-17
上传用户:
从感知机到深度神经网络带你入坑深度学习机器学习工程师Adi Chris最近学习完吴恩达在Coursera上的最新课程后,决定写篇博客来记录下自己对这一领域的理解。他建议通过这种方式可以有效地深入理解一个学习主题。除此之外,也希望这篇博客可以帮助到那些有意入坑的朋友。言归正传。在我正式介绍深度学习是什么东西之前,我想先引入一个简单的例子,借以帮助我们理解为什么需要深度神经网络。同时,本文附有使用深度神经网络模型求解异或(XOR)问题的代码,发布在GitHub上。异或问题何为异或问题?对于给定的两个上进制输入,我们通过异或逻辑门得到一个预测输出,这 过程 为异或问题。注意,输入不相等时输出为1,否则为0。1展示了异或函数的所有可能的输出结束:
标签: 深度神经网络
上传时间: 2022-06-19
上传用户:canderile
神经网络是机器学习的重要分支,是智能计算的一个主流研究方向,长期受到众多科学家的关注和研究,它植根于很多学科,结合了数学、统计学、物理学、计算机科学和工程学.已经发现,它能够解决一些传统意义上很难解决的问题,也为一些问题的解决提供了全新的想法.在传统的研究成果中,有很多表达数据的统计模型,但大都是比较简单或浅层的模型,在复杂数据的学习上通常不能获得好的学习效果.深度神经网络采用的则是一种深度、复杂的结构,具有更加强大的学习能力,目前深度神经网络已经在图像识别、语音识别等应用上取得了显著的成功.这使得这项技术受到了学术界和工业界的广泛重视,正在为机器学习领域带来一个全新的研究浪潮.
标签: 深度神经网络
上传时间: 2022-06-19
上传用户:shjgzh
上面是一段实时目标识别的演示, 计算机在视频流上标注出物体的类别, 包括人、汽车、自行车、狗、背包、领带、椅子等。今天的计算机视觉技术已经可以在图片、视频中识别出大量类别的物体, 甚至可以初步理解图片或者视频中的内容, 在这方面,人工智能已经达到了3 岁儿童的智力水平。这是一个很了不起的成就, 毕竟人工智能用了几十年的时间, 就走完了人类几十万年的进化之路,并且还在加速发展。道路总是曲折的, 也是有迹可循的。在尝试了其它方法之后, 计算机视觉在仿生学里找到了正确的道路(至少目前看是正确的) 。通过研究人类的视觉原理,计算机利用深度神经网络( Deep Neural Network,NN)实现了对图片的识别,包括文字识别、物体分类、图像理解等。在这个过程中,神经元和神经网络模型、大数据技术的发展,以及处理器(尤其是GPU)强大的算力,给人工智能技术的发展提供了很大的支持。本文是一篇学习笔记, 以深度优先的思路, 记录了对深度学习(Deep Learning)的简单梳理,主要针对计算机视觉应用领域。
上传时间: 2022-06-22
上传用户:
学python必备,数学得搞好 ,嘿嘿嘿本书的目的在于提供理解神经网络所需的数学基础知识。为了便于 读者直观地理解,书中使用大量图片,并通过具体示例来介绍。因 此,本书将数学的严谨性放在第二位。 深度学习的世界是丰富多彩的,本书主要考虑阶层型神经网络和卷 积神经网络在图像识别中的应用。 本书将 Sigmoid 函数作为激活函数,除此之外也可以考虑其他函 数。 本书以最小二乘法作为数学上的最优化的基础,除此之外也可以考 虑其他方法。 神经网络可分为有监督学习和无监督学习两类。本书主要讲解有监 督学习。 人工智能相关的文献之所以难读,其中一个原因就是各文献所用的 符号不统一。本书采用的是相关文献中常用的符号。 本书使用 Excel 进行理论验证。Excel 是一个非常优秀的工具,能 够在工作表上可视化地展现逻辑,有助于我们理解。因此,相应的 项目需要以 Excel 的基础知识为前提。
上传时间: 2022-06-22
上传用户:kingwide
从路由器底层深度透析路由技术原理当IP子网中的一台主机发送IP分组给同一IP子网的另一台主机时,它将直接把IP分组送到网络上,对方就能收到。而要送给不同IP于网上的主机时,它要选择一个能到达目的子网上的路由器,把IP分组送给该路由器,由路由器负责把IP分组送到目的地。如果没有找到这样的路由器,主机就把IP分组送给一个称为“缺省网关(default gateway)”的路由器上。“缺省网关”是每台主机上的一个配置参数,它是接在同一个网络上的某个路由器端口的IP地址。路由器转发IP分组时,只根据IP分组目的IP地址的网络号部分,选择合适的端口,把IP分组送出去。同主机一样,路由器也要判定端口所接的是否是目的子网,如果是,就直接把分组通过端口送到网络上,否则,也要选择下一个路由器来传送分组。路由器也有它的缺省网关,用来传送不知道往哪儿送的IP分组。
标签: 路由器
上传时间: 2022-06-27
上传用户:
亚马逊科学家写的动手学深度学习,非常实用
标签: 深度学习
上传时间: 2022-06-29
上传用户: