针对普通超声波测距系统测量精度低的问题,介绍了一种由ATMEGA8单片机控制的实时超声波测距系统,电路主要采用专用时间测量芯片TDC-GP21,并考虑了温度补偿,有效地保证了系统测量精度和低功耗特性。
上传时间: 2013-10-27
上传用户:bcjtao
文中在FFT基础上,运用高低通滤波器原理,采用精确计算得出多普勒频率偏差的方法,从而提高了频率、目标速度的测量精度。计算机仿真和外场试验结果均表明了此方法的有效性。目前该方法已应用于某单脉冲跟踪雷达系统。
上传时间: 2013-10-30
上传用户:qingdou
非接触感应式静电测量仪表,读数要经过乘数k与测量距离d的关系换算才能得出被测静电体的静电电压,为解决这一人工换算及测量过程繁琐问题,提出了利用超声测距技术与非接触式静电测量技术一体化静电测量方式及其设计方法,研究了超声测距技术用于非接触式静电测量一体化设计的参数与精度要求和相对测距方法应用,进行了超声测距与非接触式静电测量一体化原理与整机结构设计的可行性验证。
上传时间: 2013-11-03
上传用户:windypsm
本文提出j以通用阵列逻辑器件GAL 和只读存贮器EPROM 为核心器件.设计测量 显示控制装置的方法。配以数字式传感器及用 最小二乘法编制的曲线自动分段椒合程序生成 的EPROM 中的数据.可用于力、温度、光强等 非电量的测量显示和控制。该装置与采用微处 理器的电路相比.有相同的洲量精度,电路简 单.而且保密性好
上传时间: 2013-11-10
上传用户:langliuer
Pspice教程课程内容:在这个教程中,我们没有提到关于网络表中的Pspice 的网络表文件输出,有关内容将会在后面提到!而且我想对大家提个建议:就是我们不要只看波形好不好,而是要学会分析,分析不是分析的波形,而是学会分析数据,找出自己设计中出现的问题!有时候大家可能会看到,其实电路并没有错,只是有时候我们的仿真设置出了问题,需要修改。有时候是电路的参数设计的不合理,也可能导致一些莫明的错误!我觉得大家做一个分析后自己看看OutFile文件!点,就可以看到详细的情况了!基本的分析内容:1.直流分析2.交流分析3.参数分析4.瞬态分析进阶分析内容:1. 最坏情况分析.2. 蒙特卡洛分析3. 温度分析4. 噪声分析5. 傅利叶分析6. 静态直注工作点分析数字电路设计部分浅谈附录A: 关于Simulation Setting的简介附录B: 关于测量函数的简介附录C:关于信号源的简介
上传时间: 2013-10-14
上传用户:31633073
磁芯电感器的谐波失真分析 摘 要:简述了改进铁氧体软磁材料比损耗系数和磁滞常数ηB,从而降低总谐波失真THD的历史过程,分析了诸多因数对谐波测量的影响,提出了磁心性能的调控方向。 关键词:比损耗系数, 磁滞常数ηB ,直流偏置特性DC-Bias,总谐波失真THD Analysis on THD of the fer rite co res u se d i n i nductancShi Yan Nanjing Finemag Technology Co. Ltd., Nanjing 210033 Abstract: Histrory of decreasing THD by improving the ratio loss coefficient and hysteresis constant of soft magnetic ferrite is briefly narrated. The effect of many factors which affect the harmonic wave testing is analysed. The way of improving the performance of ferrite cores is put forward. Key words: ratio loss coefficient,hysteresis constant,DC-Bias,THD 近年来,变压器生产厂家和软磁铁氧体生产厂家,在电感器和变压器产品的总谐波失真指标控制上,进行了深入的探讨和广泛的合作,逐步弄清了一些似是而非的问题。从工艺技术上采取了不少有效措施,促进了质量问题的迅速解决。本文将就此热门话题作一些粗浅探讨。 一、 历史回顾 总谐波失真(Total harmonic distortion) ,简称THD,并不是什么新的概念,早在几十年前的载波通信技术中就已有严格要求<1>。1978年邮电部公布的标准YD/Z17-78“载波用铁氧体罐形磁心”中,规定了高μQ材料制作的无中心柱配对罐形磁心详细的测试电路和方法。如图一电路所示,利用LC组成的150KHz低通滤波器在高电平输入的情况下测量磁心产生的非线性失真。这种相对比较的实用方法,专用于无中心柱配对罐形磁心的谐波衰耗测试。 这种磁心主要用于载波电报、电话设备的遥测振荡器和线路放大器系统,其非线性失真有很严格的要求。 图中 ZD —— QF867 型阻容式载频振荡器,输出阻抗 150Ω, Ld47 —— 47KHz 低通滤波器,阻抗 150Ω,阻带衰耗大于61dB, Lg88 ——并联高低通滤波器,阻抗 150Ω,三次谐波衰耗大于61dB Ld88 ——并联高低通滤波器,阻抗 150Ω,三次谐波衰耗大于61dB FD —— 30~50KHz 放大器, 阻抗 150Ω, 增益不小于 43 dB,三次谐波衰耗b3(0)≥91 dB, DP —— Qp373 选频电平表,输入高阻抗, L ——被测无心罐形磁心及线圈, C ——聚苯乙烯薄膜电容器CMO-100V-707APF±0.5%,二只。 测量时,所配用线圈应用丝包铜电磁线SQJ9×0.12(JB661-75)在直径为16.1mm的线架上绕制 120 匝, (线架为一格) , 其空心电感值为 318μH(误差1%) 被测磁心配对安装好后,先调节振荡器频率为 36.6~40KHz, 使输出电平值为+17.4 dB, 即选频表在 22′端子测得的主波电平 (P2)为+17.4 dB,然后在33′端子处测得输出的三次谐波电平(P3), 则三次谐波衰耗值为:b3(+2)= P2+S+ P3 式中:S 为放大器增益dB 从以往的资料引证, 就可以发现谐波失真的测量是一项很精细的工作,其中测量系统的高、低通滤波器,信号源和放大器本身的三次谐波衰耗控制很严,阻抗必须匹配,薄膜电容器的非线性也有相应要求。滤波器的电感全由不带任何磁介质的大空心线圈绕成,以保证本身的“洁净” ,不至于造成对磁心分选的误判。 为了满足多路通信整机的小型化和稳定性要求, 必须生产低损耗高稳定磁心。上世纪 70 年代初,1409 所和四机部、邮电部各厂,从工艺上改变了推板空气窑烧结,出窑后经真空罐冷却的落后方式,改用真空炉,并控制烧结、冷却气氛。技术上采用共沉淀法攻关试制出了μQ乘积 60 万和 100 万的低损耗高稳定材料,在此基础上,还实现了高μ7000~10000材料的突破,从而大大缩短了与国外企业的技术差异。当时正处于通信技术由FDM(频率划分调制)向PCM(脉冲编码调制) 转换时期, 日本人明石雅夫发表了μQ乘积125 万为 0.8×10 ,100KHz)的超优铁氧体材料<3>,其磁滞系数降为优铁
上传时间: 2013-12-15
上传用户:天空说我在
电路板级的电磁兼容设计:本应用文档从元件选择、电路设计和印制电路板的布线等几个方面讨论了电路板级的电磁兼容性(EMC)设计。本文从以下几个部分进行论述:第一部分:电磁兼容性的概述第二部分:元件选择和电路设计技术第三部分:印制电路板的布线技术附录A:电磁兼容性的术语附录B:抗干扰的测量标准第一部分 — 电磁干扰和兼容性的概述电磁干扰是现代电路工业面对的一个主要问题。为了克服干扰,电路设计者不得不移走干扰源,或设法保护电路不受干扰。其目的都是为了使电路按照预期的目标来工作——即达到电磁兼容性。通常,仅仅实现板级的电磁兼容性这还不够。虽然电路是在板级工作的,但是它会对系统的其它部分辐射出噪声,从而产生系统级的问题。另外,系统级或是设备级的电磁兼容性必须要满足某种辐射标准,这样才不会影响其他设备或装置的正常工作。许多发达国家对电子设备和仪器有严格的电磁兼容性标准;为了适应这个要求,设计者必须从板级设计开始就考虑抑制电子干扰。
上传时间: 2013-11-19
上传用户:lingfei
针对电子元件的测量问题,提出了一种简易测量方法。采用555多谐振荡电路,通过C8051F060单片机控制测量电阻、电容对应振荡电路所产生的频率实现各个参数的测量,一方面测量精度较高,另一方面便于使仪表实现自动化,并可语音播报使其更加智能化。应用结果表明:该测量方法所用元器件少、电路简单,误差在±5%以内,满足实际测量要求。
上传时间: 2013-11-06
上传用户:huang111
频率是电力系统运行质量和安全情况的最主要标志之一,集成保护与控制系统需集成低频减载等控制方式,测频是低频减载算法的核心,本文较全面地阐述了电力系统频率测量的重要意义和这些年来的研究成果。以测频主算法的数学原理为线索 ,对现有的各种测频算法进行了分类和评述,并提出了频率测量的发展方向。在考虑到现有条件的基础下,考虑算法的实时性以及精度问题,选用基于DFT算法,并对该算法进行了matlab仿真。
上传时间: 2015-01-03
上传用户:baiom
摘要:介绍一种基于ATmegal6L的高精度紫外线检测仪的设计,并给出了仪表设计的硬件结构框图和软件运行流程图。通过中船重工某所应用表明.该仪表具有测量精度高、性能稳定等技术优势。它能够适用于医院、卫生防疫部门、化工等消毒紫外线灯辐照强度的监测。具有广泛的应用前景。
上传时间: 2013-11-21
上传用户:gxy670166755