VIP专区-嵌入式/单片机编程源码精选合集系列(121)资源包含以下内容:1. U盘对考的例子程序 U盘对考的例子程序.2. The book is organized around 55 specific guidelines, each of which describes a way to write better C.3. CC2430DB电路图.4. tms320c6000 将用户程序写入到flash.5. 是法国NUM数控系统1006的PLC控制软件。.6. 一本关于C8051F原理和应用的书.7. 19264说明与显示程序,对学习19264初学者很有用.8. 一个经典的东东.9. SD卡的SD模式的读写驱动.10. LPC2142 LCD12232的显示动画例程.11. 一段菜单与界面的程序 效果很好 有图片展示.12. 本驱动程序是24064液晶(肇庆金鹏产品 型号Ocmj4×15D)上使用 控制器为8822 MCU为89S52 效果很好。可以用于8822控制器上的液晶.13. blackfin533开发FFTC语言实现.14. GUI设计.15. 梁祝乐曲演奏电路设计.16. USB网卡dm9601芯片的驱动程序.17. 实现51与计算机的通信测试 通过1602LCD显示通信的数据.18. 本科教育的实体实例.19. S3C44B0学习板原理图.20. 液晶显示模块概述 一、液晶显示模块概述 RT19264D汉字图形点阵液晶显示模块.21. 嵌入式硬件设计实用手册.22. 射频识别利用nrf 2401芯片实现收发功能.23. 基于DE2实验板.24. bc7281b芯片在avr单片机上的应用.25. I2C eprom 读写程序设计.26. ds1302的中文资料.27. FPGA的英文资料,介绍的比较详细EPF10系列的.28. 基于数码管的四位动态同步显示.29. ATMEL169PV,开发详细资料,其中包含源程序代码.30. 高频波形.31. TL431应用.TL431,A、B集成电路是三端可编程并联稳压二极管。.32. uart pci 等verilog hdl 代码.33. HD300 Mp3播放器电路图 CPU部分.34. 通过VERILOG HDL语言使用CPLD连接PS2键盘..35. dspic61010A串口通讯程序.36. PIC单片机的C语言编程.37. protel 设计电路的相关资料,暂时只有一部分,等我再传.38. 采用异步方式传送数据.39. 一种好的统计参数估计方法.其中的原代码为国外学者编写.40. 这个源代码是关于利用MODEM实现单片机与PC通信的程序.
标签: 光电检测技术
上传时间: 2013-07-05
上传用户:eeworm
风能作为一种清洁可再生能源,发展迅速,已经成为世界新能源最主要的发展方向之一。本文以863计划项目"MW级风力发电机组电控系统研制"为研究背景,介绍了1.2MW永磁同步电机变速恒频风力发电系统,研究了变流系统中逆变器的控制方法。 本文首先对风力发电进行了概述,介绍了我国和世界风电发展状况以及技术发展趋势。当今风力发电技术,大功率直驱化和双馈是两个发展方向,本课题1.2MW风力发电系统就是采用了永磁同步电机加交直交变流系统的结构模式,中间省去了齿轮箱,减少了维护,具有较好的发展前景。 论文第二章首先对风轮机叶片的空气动力特性进行了分析,介绍了不同风速下风力发电机的控制策略。就直驱技术与变速箱/感应电机技术--目前风力发电领域变速恒频技术的两大发展方向作了较为详细的介绍分析。 在变流系统中,逆变并网是重要的环节,起到了将电能传输到电网的作用。文章中重点分析了三相并网逆变器的主电路结构、原理和工作方法,并进行了理论推导和公式说明。 本文对1.2MW永磁同步电机变速恒频风力发电系统的主电路参数的选择作了理论推导和计算,包括主电路直流侧电容,网侧电感,三重化升压电感,网侧滤波电容等,还确定了斩波和逆变部分所采用的开关管和六相整流所采用的二极管,并在额定正常工作情况下,分别计算斩波和逆变部分开关管的损耗和开关管的结温。 本课题采用瞬时电流法对并网逆变器进行控制。在实验中上确定了电压外环和电流内环的PI参数,顺利完成了闭环控制实验。 文中采用DSP2407高速集成控制芯片是控制的核心,并根据控制流程图对其控制进行了软硬件设计,实现了控制板上的信号采集、运算、故障检测、电路驱动等功能。并进行了小功率试验,得到了较好的电压电流波形,并对波形进行了详细分析,验证了本文采用方法的正确性。
上传时间: 2013-07-06
上传用户:wangdean1101
逆变控制器的发展经历从分立元件的模拟电路到以专用微处理芯片(DSP/MCU)为核心的电路系统,并从数模混合电路过渡到纯数字控制的历程。但是,通用微处理芯片是为一般目的而设计,存在一定局限。为此,近几年来逆变器专用控制芯片(ASIC)实现技术的研究越来越受到关注,已成为逆变控制器发展的新方向之一。本文利用一个成熟的单相电压型PWM逆变器控制模型,围绕逆变器专用控制芯片ASIC的实现技术,依次对专用芯片的系统功能划分,硬件算法,全系统的硬件设计及优化,流水线操作和并行化,芯片运行稳定性等问题进行了初步研究。首先引述了单相电压型PWM逆变器连续时间和离散时间的数学模型,以及基于极点配置的单相电压型PWM逆变器电流内环电压外环双闭环控制系统的设计过程,同时给出了仿真结果,仿真表明此系统具有很好的动、静态性能,并且具有自动限流功能,提高了系统的可靠性。紧接着分析了FPGA器件的特征和结构。在给出本芯片应用目标的基础上,制定了FPGA目标器件的选择原则和芯片的技术规格,完成了器件选型及相关的开发环境和工具的选取。然后系统阐述了复杂FPGA设计的设计方法学,详细介绍了基于FPGA的ASIC设计流程,概要介绍了仅使用QuartusII的开发流程,以及Modelsim、SynplifyPro、QuartusII结合使用的开发流程。在此基础上,进行了芯片系统功能划分,针对:DDS标准正弦波发生器,电压电流双环控制算法单元,硬件PI算法单元,SPWM产生器,三角波发生器,死区控制器,数据流/控制流模块等逆变器控制硬件算法/控制单元,研究了它们的硬件算法,完成了模块化设计。分析了全数字锁相环的结构和模型,以此为基础,设计了一种应用于逆变器的,用比例积分方法替代传统锁相系统中的环路滤波,用相位累加器实现数控振荡器(DCO)功能的高精度二阶全数字锁相环(DPLL)。分析了“流水线操作”等设计优化问题,并针对逆变器控制系统中,控制系统算法呈多层结构,且层与层之间还有数据流联系,其执行顺序和数据流的走向较为复杂,不利于直接采用流水线技术进行设计的特点,提出一种全新的“分层多级流水线”设计技术,有效地解决了复杂控制系统的流水线优化设计问题。本文最后对芯片运行稳定性等问题进行了初步研究。指出了设计中的“竞争冒险”和饱受困扰之苦的“亚稳态”问题,分析了产生机理,并给出了常用的解决措施。
上传时间: 2013-05-28
上传用户:ice_qi
用一片单片机制作电子礼物,美妙动听的音乐与点阵显示相结合,由两个按键控制播放与暂停。
上传时间: 2013-05-18
上传用户:portantal
随着数字电视日益深入人心,高清概念越来越为人所熟知。带有高清视频功能的产品已经逐步走向人们的工作和生活,高清视频处理已经从理论研究走向系统实际应用。毫无疑问,无论是从观众的视觉还是从产业的角度来看,高清视频已经成为数字视频技术发展的必然趋势。本文研究了整个编解码系统中ARM控制模块的软件设计,最终完成以PC机为终端控制平台,经ARM控制模块将命令发送给核心编解码芯片MB86H51,使其完成相应的操作。、本文主要的工作有如下几个方面: 1、根据ARM各型号芯片的特点,结合本系统的实际需求,最终选定Atmel公司的AT91SAM9261作为ARM控制板的核心处理芯片,并深入了解该芯片的工作原理和内部结构。 2、根据本系统中所选用的DataFlash型号及外围电路连接情况等诸多因素,并结合Atmel公司所提供的AT91SAM9261一级BootLoader参考代码,编写调试符合本系统启动运行的一级BootLoader引导程序,也称为Bootstrap引导程序,最终成功实现引导U-Boot程序。 3、深入分析了U-Boot和Linux的体系结构和编译过程,结合AT91SAM9261芯片的特点和实际外围电路的连接情况,修改U-Boot和Linux中主要的编译参数,并进行重新编译,最终成功移植到系统板中。 4、在ITU-T提供的H.264标准的参考解码程序JM8.6的基础上,详细研究了H.264视频编码标准以及具体的解码器结构和解码流程,并结合DirectX技术,开发了一款基于PC机的H.264解码播放器,用于验证存储在PC机上的H.264压缩码流的正确性。
上传时间: 2013-04-24
上传用户:acon
本文设计了一款基于STM32的多功能MP3,功能包括:MP3/WMA/WAV/MIDI音频文件播放、JPEG/JPG/BMP图片浏览、游戏、闹钟、万年历、电子书、调频收音机、彩色台灯、功率放大等。
上传时间: 2013-07-13
上传用户:sy_jiadeyi
特点: 精确度0.1%满刻度 可作各式數學演算式功能如:A+B/A-B/AxB/A/B/A&B(Hi or Lo)/|A|/ 16 BIT类比输出功能 输入与输出绝缘耐压2仟伏特/1分钟(input/output/power) 宽范围交直流兩用電源設計 尺寸小,穩定性高
上传时间: 2014-12-23
上传用户:ydd3625
特点(FEATURES) 精确度0.1%满刻度 (Accuracy 0.1%F.S.) 可作各式数学演算式功能如:A+B/A-B/AxB/A/B/A&B(Hi or Lo)/|A| (Math functioA+B/A-B/AxB/A/B/A&B(Hi&Lo)/|A|/etc.....) 16 BIT 类比输出功能(16 bit DAC isolating analog output function) 输入/输出1/输出2绝缘耐压2仟伏特/1分钟(Dielectric strength 2KVac/1min. (input/output1/output2/power)) 宽范围交直流两用电源设计(Wide input range for auxiliary power) 尺寸小,稳定性高(Dimension small and High stability)
上传时间: 2013-11-24
上传用户:541657925
随着集成功能的不断增加,移动电话还可作为便携式媒体播放器(PMP)、数码相机、掌上电脑(PDA)、甚至全球定位系统(GPS)使用。如何获得更加逼真的显示、突破热瓶颈、高效智能地管理电源是系统设计人员当前面临的挑战。
上传时间: 2013-10-16
上传用户:时代电子小智
TLC2543是TI公司的12位串行模数转换器,使用开关电容逐次逼近技术完成A/D转换过程。由于是串行输入结构,能够节省51系列单片机I/O资源;且价格适中,分辨率较高,因此在仪器仪表中有较为广泛的应用。 TLC2543的特点 (1)12位分辩率A/D转换器; (2)在工作温度范围内10μs转换时间; (3)11个模拟输入通道; (4)3路内置自测试方式; (5)采样率为66kbps; (6)线性误差±1LSBmax; (7)有转换结束输出EOC; (8)具有单、双极性输出; (9)可编程的MSB或LSB前导; (10)可编程输出数据长度。 TLC2543的引脚排列及说明 TLC2543有两种封装形式:DB、DW或N封装以及FN封装,这两种封装的引脚排列如图1,引脚说明见表1 TLC2543电路图和程序欣赏 #include<reg52.h> #include<intrins.h> #define uchar unsigned char #define uint unsigned int sbit clock=P1^0; sbit d_in=P1^1; sbit d_out=P1^2; sbit _cs=P1^3; uchar a1,b1,c1,d1; float sum,sum1; double sum_final1; double sum_final; uchar duan[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f}; uchar wei[]={0xf7,0xfb,0xfd,0xfe}; void delay(unsigned char b) //50us { unsigned char a; for(;b>0;b--) for(a=22;a>0;a--); } void display(uchar a,uchar b,uchar c,uchar d) { P0=duan[a]|0x80; P2=wei[0]; delay(5); P2=0xff; P0=duan[b]; P2=wei[1]; delay(5); P2=0xff; P0=duan[c]; P2=wei[2]; delay(5); P2=0xff; P0=duan[d]; P2=wei[3]; delay(5); P2=0xff; } uint read(uchar port) { uchar i,al=0,ah=0; unsigned long ad; clock=0; _cs=0; port<<=4; for(i=0;i<4;i++) { d_in=port&0x80; clock=1; clock=0; port<<=1; } d_in=0; for(i=0;i<8;i++) { clock=1; clock=0; } _cs=1; delay(5); _cs=0; for(i=0;i<4;i++) { clock=1; ah<<=1; if(d_out)ah|=0x01; clock=0; } for(i=0;i<8;i++) { clock=1; al<<=1; if(d_out) al|=0x01; clock=0; } _cs=1; ad=(uint)ah; ad<<=8; ad|=al; return(ad); } void main() { uchar j; sum=0;sum1=0; sum_final=0; sum_final1=0; while(1) { for(j=0;j<128;j++) { sum1+=read(1); display(a1,b1,c1,d1); } sum=sum1/128; sum1=0; sum_final1=(sum/4095)*5; sum_final=sum_final1*1000; a1=(int)sum_final/1000; b1=(int)sum_final%1000/100; c1=(int)sum_final%1000%100/10; d1=(int)sum_final%10; display(a1,b1,c1,d1); } }
上传时间: 2013-11-19
上传用户:shen1230