虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

汽车保养<b>修理</b>基础知识大全

  • 微机原理与汇编语言程序设计课件

    微机原理与汇编语言程序设计课件为PPT文件,内容有:第1章 基础知识 4第2章 微型计算机系统结构 6第3章 程序加载并执行 4第4章 微处理器一般指令 6第5章 汇编语言程序设计基础 4第6章 算术运算与逻辑运算 8第7章 基本输入与输出 4第8章 程序流程控制 10第9章 字符串处理 6第10章 宏  4第11章 过程 4第12章 文件处理 4第13章 模块化程序设计 4

    标签: 微机原理 汇编语言 程序设计

    上传时间: 2013-10-28

    上传用户:yanming8525826

  • 单片机应用技术电子教案

    单片机应用技术电子教案内容有:单片机的程序设计单片机的串行口,单片机的定时计数器,单片机的基础知识.,单片机的结构原理.,单片机的扩展.,单片机的外围接口,单片机的指令系统,单片机的中断。

    标签: 单片机 应用技术 电子教案

    上传时间: 2013-10-22

    上传用户:leawon947

  • 单片机课程总结

    单片机基础知识单片机的外部结构:1、 DIP40双列直插;2、 P0,P1,P2,P3四个8位准双向I/O引脚;(作为I/O输入时,要先输出高电平)3、 电源VCC(PIN40)和地线GND(PIN20);4、 高电平复位RESET(PIN9);(10uF电容接VCC与RESET,即可实现上电复位)5、 内置振荡电路,外部只要接晶体至X1(PIN18)和X0(PIN19);(频率为主频的12倍)6、 程序配置EA(PIN31)接高电平VCC;(运行单片机内部ROM中的程序)7、 P3支持第二功能:RXD、TXD、INT0、INT1、T0、T1 单片机内部I/O部件:(所为学习单片机,实际上就是编程控制以下I/O部件,完成指定任务)1、 四个8位通用I/O端口,对应引脚P0、P1、P2和P3;2、 两个16位定时计数器;(TMOD,TCON,TL0,TH0,TL1,TH1)3、 一个串行通信接口;(SCON,SBUF)4、 一个中断控制器;(IE,IP)针对AT89C52单片机,头文件AT89x52.h给出了SFR特殊功能寄存器所有端口的定义。教科书的160页给出了针对MCS51系列单片机的C语言扩展变量类型。 C语言编程基础:1、 十六进制表示字节0x5a:二进制为01011010B;0x6E为01101110。2、 如果将一个16位二进数赋给一个8位的字节变量,则自动截断为低8位,而丢掉高8位。3、 ++var表示对变量var先增一;var—表示对变量后减一。4、 x |= 0x0f;表示为 x = x | 0x0f;5、 TMOD = ( TMOD & 0xf0 ) | 0x05;表示给变量TMOD的低四位赋值0x5,而不改变TMOD的高四位。6、 While( 1 ); 表示无限执行该语句,即死循环。语句后的分号表示空循环体,也就是{;}第一章    单片机最小应用系统:单片机最小系统的硬件原理接线图:1、 接电源:VCC(PIN40)、GND(PIN20)。加接退耦电容0.1uF2、 接晶体:X1(PIN18)、X2(PIN19)。注意标出晶体频率(选用12MHz),还有辅助电容30pF3、 接复位:RES(PIN9)。接上电复位电路,以及手动复位电路,分析复位工作原理4、 接配置:EA(PIN31)。说明原因。第二章      基本I/O口的应用第三章      显示驱动第七章      串行接口应用

    标签: 单片机

    上传时间: 2013-10-30

    上传用户:athjac

  • 微机原理与接口技术精品课程(课件)

    微机原理与接口技术精品课程(课件):微机:IBM PC系列机原理:8088汇编语言程序设计接口:半导体存储器及其接口 I/O接口电路及其与外设连接技术:硬件--接口电路原理软件--接口编程方法第1章 基础知识 4第2章 微型计算机系统结构 6第3章 程序加载并执行 4第4章 微处理器一般指令 6第5章 汇编语言程序设计基础 4第6章 算术运算与逻辑运算 8第7章 基本输入与输出 4第8章 程序流程控制 10第9章 字符串处理 6第10章 宏  4第11章 过程 4第12章 文件处理 4第13章 模块化程序设计 4

    标签: 微机原理 接口技术 精品课程

    上传时间: 2014-03-17

    上传用户:894448095

  • mcs-51单片机应用教程

    mcs-51单片机应用教程以MCS-51系列单片机为主线,从实用的角度出发,通过介绍大量单片机技能训练实例和应用实例,指导读者学习和使用单片机。《MCS-51单片机应用教程》分为基础篇和应用篇两大部分。基础篇讲述单片机的基础知识,包括单片机原理与结构、指令系统、定时与中断、串行通信等。应用篇包括单片机的基础训练和应用实例两部分。《MCS-51单片机应用教程》各章节由浅入深,前后呼应,使读者能够在理解掌握单片机原理的基础上,很快学会单片机的使用。 MCS-51单片机应用教程 目录 第1篇 基础篇 第1章 MCS-51单片机系统结构 1.1 概述 1.2 单片机的内部结构 1.3 单片机的存储器结构 1.4 单片机并行I/O口 1.5 单片机的复位电路 1.6 单片机的时钟与时序 第2章 单片机的指令系统 2.1 指令系统概述 2.2 寻址方式 2.3 指令功能介绍 第3章 单片机的中断系统与定时器/计数器 3.1 中断系统 3.2 单片机的定时器/计数器 3.3 外部中断源的扩展 第4章 单片机的串行通信 4.1 串行通信的概念 4.2 MCS-51串行口的结构及工作方式 4.3 串行通信的应用 第2篇 应用篇 第5章 单片机实用开发步骤 5.1 单片机应用系统设计的一般流程 5.2 单片机汇编程序的编辑方法 5.3 源程序的编译

    标签: mcs 51 单片机 应用教程

    上传时间: 2013-11-12

    上传用户:qingdou

  • avr单片机c语言

    第1章 单片机系统概述1.1 AVR系列单片机的特点1.2 AT90系列单片机简介第2章 AT90LS8535单片机的基础知识2.1 AT90LS8535单片机的总体结构2.1.1 AT90LS8535单片机的中央处理器2.1.2 AT90LS8535单片机的存储器组织2.1.3 AT90LS8535单片机的I/O接口2.1.4 AT90LS8535单片机的内部资源2.1.5 AT90LS8535单片机的时钟电路2.1.6 AT90LS8535单片机的系统复位2.1.7 AT90LS8535单片机的节电方式2.1.8 AT90LS8535单片机的芯片引脚2.2 AT90LS8535单片机的指令系统2.2.1 汇编指令格式2.2.2 寻址方式2.2.3 伪指令2.2.4 指令类型及数据操作方式2.3 应用程序设计2.3.1 程序设计方法2.3.2 应用程序举例第3章 AT90LS8535单片机的C编程3.1 支持高级语言编程的AVR系列单片机3.2 AVR的C编译器3.3 ICC AVR介绍3.3.1 安装ICC AVR3.3.2 设置ICC AVR3.4 用ICC AVR编写应用程序3.5 下载程序文件第4章 数据类型、运算符和表达式4.1 ICC AVR支持的数据类型4.2 常量与变量4.2.1 常量4.2.2 变量4.3 AT90LS8535的存储空间4.4 算术和赋值运算4.4.1 算术运算符和算术表达式4.4.2 赋值运算符和赋值表达式4.5 逻辑运算4.6 关系运算4.7 位操作4.7.1 位逻辑运算4.7.2 移位运算4.8 逗号运算第5章 控制流5.1 C语言的结构化程序设计5.1.1 顺序结构5.1.2 选择结构5.1.3 循环结构5.2 选择语句5.2.1 if语句5.2.2 switch分支5.2.3 选择语句的嵌套5.3 循环语句5.3.1 while语句5.3.2 do…while语句5.3.3 for语句5.3.4 循环语句嵌套5.3.5 break语句和continue语句第6章 函数6.1 函数的定义6.1.1 函数的定义的一般形式6.1.2 函数的参数6.1.3 函数的值6.2 函数的调用6.2.1 函数的一般调用6.2.2 函数的递归调用6.2.3 函数的嵌套使用6.3 变量的类型及其存储方式6.3.1 局部变量6.3.2 局部变量的存储方式6.3.3 全局变量6.3.4 全局变量的存储方式6.4 内部函数和外部函数6.4.1 内部函数6.4.2 外部函数第7章 指针第8章 结构体和共用体第9章 AT90LS8535的内部资源第10章 AT90LS8535的人机接口编程第11章 AT90LS8535的外围扩展第12章 AT90LS8535的通信编程第13章 系统设计中的程序处理方法

    标签: avr 单片机c语言

    上传时间: 2013-10-31

    上传用户:smthxt

  • 单片机应用系统抗干扰技术

    单片机应用系统抗干扰技术:第1章 电磁干扰控制基础. 1.1 电磁干扰的基本概念1 1.1.1 噪声与干扰1 1.1.2 电磁干扰的形成因素2 1.1.3 干扰的分类2 1.2 电磁兼容性3 1.2.1 电磁兼容性定义3 1.2.2 电磁兼容性设计3 1.2.3 电磁兼容性常用术语4 1.2.4 电磁兼容性标准6 1.3 差模干扰和共模干扰8 1.3.1 差模干扰8 1.3.2 共模干扰9 1.4 电磁耦合的等效模型9 1.4.1 集中参数模型9 1.4.2 分布参数模型10 1.4.3 电磁波辐射模型11 1.5 电磁干扰的耦合途径14 1.5.1 传导耦合14 1.5.2 感应耦合(近场耦合)15 .1.5.3 电磁辐射耦合(远场耦合)15 1.6 单片机应用系统电磁干扰控制的一般方法16 第2章 数字信号耦合与传输机理 2.1 数字信号与电磁干扰18 2.1.1 数字信号的开关速度与频谱18 2.1.2 开关暂态电源尖峰电流噪声22 2.1.3 开关暂态接地反冲噪声24 2.1.4 高速数字电路的EMI特点25 2.2 导线阻抗与线间耦合27 2.2.1 导体交直流电阻的计算27 2.2.2 导体电感量的计算29 2.2.3 导体电容量的计算31 2.2.4 电感耦合分析32 2.2.5 电容耦合分析35 2.3 信号的长线传输36 2.3.1 长线传输过程的数学描述36 2.3.2 均匀传输线特性40 2.3.3 传输线特性阻抗计算42 2.3.4 传输线特性阻抗的重复性与阻抗匹配44 2.4 数字信号传输过程中的畸变45 2.4.1 信号传输的入射畸变45 2.4.2 信号传输的反射畸变46 2.5 信号传输畸变的抑制措施49 2.5.1 最大传输线长度的计算49 2.5.2 端点的阻抗匹配50 2.6 数字信号的辐射52 2.6.1 差模辐射52 2.6.2 共模辐射55 2.6.3 差模和共模辐射比较57 第3章 常用元件的可靠性能与选择 3.1 元件的选择与降额设计59 3.1.1 元件的选择准则59 3.1.2 元件的降额设计59 3.2 电阻器60 3.2.1 电阻器的等效电路60 3.2.2 电阻器的内部噪声60 3.2.3 电阻器的温度特性61 3.2.4 电阻器的分类与主要参数62 3.2.5 电阻器的正确选用66 3.3 电容器67 3.3.1 电容器的等效电路67 3.3.2 电容器的种类与型号68 3.3.3 电容器的标志方法70 3.3.4 电容器引脚的电感量71 3.3.5 电容器的正确选用71 3.3.6 电容器使用注意事项73 3.4 电感器73 3.4.1 电感器的等效电路74 3.4.2 电感器使用的注意事项74 3.5 数字集成电路的抗干扰性能75 3.5.1 噪声容限与抗干扰能力75 3.5.2 施密特集成电路的噪声容限77 3.5.3 TTL数字集成电路的抗干扰性能78 3.5.4 CMOS数字集成电路的抗干扰性能79 3.5.5 CMOS电路使用中注意事项80 3.5.6 集成门电路系列型号81 3.6 高速CMOS 54/74HC系列接口设计83 3.6.1 54/74HC 系列芯片特点83 3.6.2 74HC与TTL接口85 3.6.3 74HC与单片机接口85 3.7 元器件的装配工艺对可靠性的影响86 第4章 电磁干扰硬件控制技术 4.1 屏蔽技术88 4.1.1 电场屏蔽88 4.1.2 磁场屏蔽89 4.1.3 电磁场屏蔽91 4.1.4 屏蔽损耗的计算92 4.1.5 屏蔽体屏蔽效能的计算99 4.1.6 屏蔽箱的设计100 4.1.7 电磁泄漏的抑制措施102 4.1.8 电缆屏蔽层的屏蔽原理108 4.1.9 屏蔽与接地113 4.1.10 屏蔽设计要点113 4.2 接地技术114 4.2.1 概述114 4.2.2 安全接地115 4.2.3 工作接地117 4.2.4 接地系统的布局119 4.2.5 接地装置和接地电阻120 4.2.6 地环路问题121 4.2.7 浮地方式122 4.2.8 电缆屏蔽层接地123 4.3 滤波技术126 4.3.1 滤波器概述127 4.3.2 无源滤波器130 4.3.3 有源滤波器138 4.3.4 铁氧体抗干扰磁珠143 4.3.5 贯通滤波器146 4.3.6 电缆线滤波连接器149 4.3.7 PCB板滤波器件154 4.4 隔离技术155 4.4.1 光电隔离156 4.4.2 继电器隔离160 4.4.3 变压器隔离 161 4.4.4 布线隔离161 4.4.5 共模扼流圈162 4.5 电路平衡结构164 4.5.1 双绞线在平衡电路中的使用164 4.5.2 同轴电缆的平衡结构165 4.5.3 差分放大器165 4.6 双绞线的抗干扰原理及应用166 4.6.1 双绞线的抗干扰原理166 4.6.2 双绞线的应用168 4.7 信号线间的串扰及抑制169 4.7.1 线间串扰分析169 4.7.2 线间串扰的抑制173 4.8 信号线的选择与敷设174 4.8.1 信号线型式的选择174 4.8.2 信号线截面的选择175 4.8.3 单股导线的阻抗分析175 4.8.4 信号线的敷设176 4.9 漏电干扰的防止措施177 4.10 抑制数字信号噪声常用硬件措施177 4.10.1 数字信号负传输方式178 4.10.2 提高数字信号的电压等级178 4.10.3 数字输入信号的RC阻容滤波179 4.10.4 提高输入端的门限电压181 4.10.5 输入开关触点抖动干扰的抑制方法181 4.10.6 提高器件的驱动能力184 4.11 静电放电干扰及其抑制184 第5章 主机单元配置与抗干扰设计 5.1 单片机主机单元组成特点186 5.1.1 80C51最小应用系统186 5.1.2 低功耗单片机最小应用系统187 5.2 总线的可靠性设计191 5.2.1 总线驱动器191 5.2.2 总线的负载平衡192 5.2.3 总线上拉电阻的配置192 5.3 芯片配置与抗干扰193 5.3.1去耦电容配置194 5.3.2 数字输入端的噪声抑制194 5.3.3 数字电路不用端的处理195 5.3.4 存储器的布线196 5.4 译码电路的可靠性分析197 5.4.1 过渡干扰与译码选通197 5.4.2 译码方式与抗干扰200 5.5 时钟电路配置200 5.6 复位电路设计201 5.6.1 复位电路RC参数的选择201 5.6.2 复位电路的可靠性与抗干扰分析202 5.6.3 I/O接口芯片的延时复位205 5.7 单片机系统的中断保护问题205 5.7.1 80C51单片机的中断机构205 5.7.2 常用的几种中断保护措施205 5.8 RAM数据掉电保护207 5.8.1 片内RAM数据保护207 5.8.2 利用双片选的外RAM数据保护207 5.8.3 利用DS1210实现外RAM数据保护208 5.8.4 2 KB非易失性随机存储器DS1220AB/AD211 5.9 看门狗技术215 5.9.1 由单稳态电路实现看门狗电路216 5.9.2 利用单片机片内定时器实现软件看门狗217 5.9.3 软硬件结合的看门狗技术219 5.9.4 单片机内配置看门狗电路221 5.10 微处理器监控器223 5.10.1 微处理器监控器MAX703~709/813L223 5.10.2 微处理器监控器MAX791227 5.10.3 微处理器监控器MAX807231 5.10.4 微处理器监控器MAX690A/MAX692A234 5.10.5 微处理器监控器MAX691A/MAX693A238 5.10.6 带备份电池的微处理器监控器MAX1691242 5.11 串行E2PROM X25045245 第6章 测量单元配置与抗干扰设计 6.1 概述255 6.2 模拟信号放大器256 6.2.1 集成运算放大器256 6.2.2 测量放大器组成原理260 6.2.3 单片集成测量放大器AD521263 6.2.4 单片集成测量放大器AD522265 6.2.5 单片集成测量放大器AD526266 6.2.6 单片集成测量放大器AD620270 6.2.7 单片集成测量放大器AD623274 6.2.8 单片集成测量放大器AD624276 6.2.9 单片集成测量放大器AD625278 6.2.10 单片集成测量放大器AD626281 6.3 电压/电流变换器(V/I)283 6.3.1 V/I变换电路..283 6.3.2 集成V/I变换器XTR101284 6.3.3 集成V/I变换器XTR110289 6.3.4 集成V/I变换器AD693292 6.3.5 集成V/I变换器AD694299 6.4 电流/电压变换器(I/V)302 6.4.1 I/V变换电路302 6.4.2 RCV420型I/V变换器303 6.5 具有放大、滤波、激励功能的模块2B30/2B31305 6.6 模拟信号隔离放大器313 6.6.1 隔离放大器ISO100313 6.6.2 隔离放大器ISO120316 6.6.3 隔离放大器ISO122319 6.6.4 隔离放大器ISO130323 6.6.5 隔离放大器ISO212P326 6.6.6 由两片VFC320组成的隔离放大器329 6.6.7 由两光耦组成的实用线性隔离放大器333 6.7 数字电位器及其应用336 6.7.1 非易失性数字电位器x9221336 6.7.2 非易失性数字电位器x9241343 6.8 传感器供电电源的配置及抗干扰346 6.8.1 传感器供电电源的扰动补偿347 6.8.2 单片集成精密电压芯片349 6.8.3 A/D转换器芯片提供基准电压350 6.9 测量单元噪声抑制措施351 6.9.1 外部噪声源的干扰及其抑制351 6.9.2 输入信号串模干扰的抑制352 6.9.3 输入信号共模干扰的抑制353 6.9.4 仪器仪表的接地噪声355 第7章 D/A、A/D单元配置与抗干扰设计 7.1 D/A、A/D转换器的干扰源357 7.2 D/A转换原理及抗干扰分析358 7.2.1 T型电阻D/A转换器359 7.2.2 基准电源精度要求361 7.2.3 D/A转换器的尖峰干扰362 7.3 典型D/A转换器与单片机接口363 7.3.1 并行12位D/A转换器AD667363 7.3.2 串行12位D/A转换器MAX5154370 7.4 D/A转换器与单片机的光电接口电路377 7.5 A/D转换器原理与抗干扰性能378 7.5.1 逐次比较式ADC原理378 7.5.2 余数反馈比较式ADC原理378 7.5.3 双积分ADC原理380 7.5.4 V/F ADC原理382 7.5.5 ∑Δ式ADC原理384 7.6 典型A/D转换器与单片机接口387 7.6.18 位并行逐次比较式MAX 118387 7.6.28 通道12位A/D转换器MAX 197394 7.6.3 双积分式A/D转换器5G14433399 7.6.4 V/F转换器AD 652在A/D转换器中的应用403 7.7 采样保持电路与抗干扰措施408 7.8 多路模拟开关与抗干扰措施412 7.8.1 CD4051412 7.8.2 AD7501413 7.8.3 多路开关配置与抗干扰技术413 7.9 D/A、A/D转换器的电源、接地与布线416 7.10 精密基准电压电路与噪声抑制416 7.10.1 基准电压电路原理417 7.10.2 引脚可编程精密基准电压源AD584418 7.10.3 埋入式齐纳二极管基准AD588420 7.10.4 低漂移电压基准MAX676/MAX677/MAX678422 7.10.5 低功率低漂移电压基准MAX873/MAX875/MAX876424 7.10.6 MC1403/MC1403A、MC1503精密电压基准电路430 第8章 功率接口与抗干扰设计 8.1 功率驱动元件432 8.1.1 74系列功率集成电路432 8.1.2 75系列功率集成电路433 8.1.3 MOC系列光耦合过零触发双向晶闸管驱动器435 8.2 输出控制功率接口电路438 8.2.1 继电器输出驱动接口438 8.2.2 继电器—接触器输出驱动电路439 8.2.3 光电耦合器—晶闸管输出驱动电路439 8.2.4 脉冲变压器—晶闸管输出电路440 8.2.5 单片机与大功率单相负载的接口电路441 8.2.6 单片机与大功率三相负载间的接口电路442 8.3 感性负载电路噪声的抑制442 8.3.1 交直流感性负载瞬变噪声的抑制方法442 8.3.2 晶闸管过零触发的几种形式445 8.3.3 利用晶闸管抑制感性负载的瞬变噪声447 8.4 晶闸管变流装置的干扰和抑制措施448 8.4.1 晶闸管变流装置电气干扰分析448 8.4.2 晶闸管变流装置的抗干扰措施449 8.5 固态继电器451 8.5.1 固态继电器的原理和结构451 8.5.2 主要参数与选用452 8.5.3 交流固态继电器的使用454 第9章 人机对话单元配置与抗干扰设计 9.1 键盘接口抗干扰问题456 9.2 LED显示器的构造与特点458 9.3 LED的驱动方式459 9.3.1 采用限流电阻的驱动方式459 9.3.2 采用LM317的驱动方式460 9.3.3 串联二极管压降驱动方式462 9.4 典型键盘/显示器接口芯片与单片机接口463 9.4.1 8位LED驱动器ICM 7218B463 9.4.2 串行LED显示驱动器MAX 7219468 9.4.3 并行键盘/显示器专用芯片8279482 9.4.4 串行键盘/显示器专用芯片HD 7279A492 9.5 LED显示接口的抗干扰措施502 9.5.1 LED静态显示接口的抗干扰502 9.5.2 LED动态显示接口的抗干扰506 9.6 打印机接口与抗干扰技术508 9.6.1 并行打印机标准接口信号508 9.6.2 打印机与单片机接口电路509 9.6.3 打印机电磁干扰的防护设计510 9.6.4 提高数据传输可靠性的措施512 第10章 供电电源的配置与抗干扰设计 10.1 电源干扰问题概述513 10.1.1 电源干扰的类型513 10.1.2 电源干扰的耦合途径514 10.1.3 电源的共模和差模干扰515 10.1.4 电源抗干扰的基本方法516 10.2 EMI电源滤波器517 10.2.1 实用低通电容滤波器518 10.2.2 双绕组扼流圈的应用518 10.3 EMI滤波器模块519 10.3.1 滤波器模块基础知识519 10.3.2 电源滤波器模块521 10.3.3 防雷滤波器模块531 10.3.4 脉冲群抑制模块532 10.4 瞬变干扰吸收器件532 10.4.1 金属氧化物压敏电阻(MOV)533 10.4.2 瞬变电压抑制器(TVS)537 10.5 电源变压器的屏蔽与隔离552 10.6 交流电源的供电抗干扰方案553 10.6.1 交流电源配电方式553 10.6.2 交流电源抗干扰综合方案555 10.7 供电直流侧抑制干扰措施555 10.7.1 整流电路的高频滤波555 10.7.2 串联型直流稳压电源配置与抗干扰556 10.7.3 集成稳压器使用中的保护557 10.8 开关电源干扰的抑制措施559 10.8.1 开关噪声的分类559 10.8.2 开关电源噪声的抑制措施560 10.9 微机用不间断电源UPS561 10.10 采用晶闸管无触点开关消除瞬态干扰设计方案564 第11章 印制电路板的抗干扰设计 11.1 印制电路板用覆铜板566 11.1.1 覆铜板材料566 11.1.2 覆铜板分类568 11.1.3 覆铜板的标准与电性能571 11.1.4 覆铜板的主要特点和应用583 11.2 印制板布线设计基础585 11.2.1 印制板导线的阻抗计算585 11.2.2 PCB布线结构和特性阻抗计算587 11.2.3 信号在印制板上的传播速度589 11.3 地线和电源线的布线设计590 11.3.1 降低接地阻抗的设计590 11.3.2 减小电源线阻抗的方法591 11.4 信号线的布线原则592 11.4.1 信号传输线的尺寸控制592 11.4.2 线间串扰控制592 11.4.3 辐射干扰的抑制593 11.4.4 反射干扰的抑制594 11.4.5 微机自动布线注意问题594 11.5 配置去耦电容的方法594 11.5.1 电源去耦595 11.5.2 集成芯片去耦595 11.6 芯片的选用与器件布局596 11.6.1 芯片选用指南596 11.6.2 器件的布局597 11.6.3 时钟电路的布置598 11.7 多层印制电路板599 11.7.1 多层印制板的结构与特点599 11.7.2 多层印制板的布局方案600 11.7.3 20H原则605 11.8 印制电路板的安装和板间配线606 第12章 软件抗干扰原理与方法 12.1 概述607 12.1.1 测控系统软件的基本要求607 12.1.2 软件抗干扰一般方法607 12.2 指令冗余技术608 12.2.1 NOP的使用609 12.2.2 重要指令冗余609 12.3 软件陷阱技术609 12.3.1 软件陷阱609 12.3.2 软件陷阱的安排610 12.4 故障自动恢复处理程序613 12.4.1 上电标志设定614 12.4.2 RAM中数据冗余保护与纠错616 12.4.3 软件复位与中断激活标志617 12.4.4 程序失控后恢复运行的方法618 12.5 数字滤波619 12.5.1 程序判断滤波法620 12.5.2 中位值滤波法620 12.5.3 算术平均滤波法621 12.5.4 递推平均滤波法623 12.5.5 防脉冲干扰平均值滤波法624 12.5.6 一阶滞后滤波法626 12.6 干扰避开法627 12.7 开关量输入/输出软件抗干扰设计629 12.7.1 开关量输入软件抗干扰措施629 12.7.2 开关量输出软件抗干扰措施629 12.8 编写软件的其他注意事项630 附录 电磁兼容器件选购信息632

    标签: 单片机 应用系统 抗干扰技术

    上传时间: 2013-10-20

    上传用户:xdqm

  • 电子工程师创新设计必备宝典之FPGA开发全攻略

    2008年,我参加了几次可编程器件供应商举办的技术研讨会,让我留下深刻印象的是参加这些研讨会的工程师人数之多,简直可以用爆满来形容,很多工程师聚精会神地全天听讲,很少出现吃完午饭就闪人的现象,而且工程师们对研讨会上展出的基于可编程器件的通信、消费电子、医疗电子、工业等解决方案也有浓厚的兴趣,这和其他器件研讨会形成了鲜明的对比。 Garnter和iSuppli公布的数据显示:2008年,全球半导体整体销售出现25年以来首次萎缩现象,但是,可编程器件却还在保持了增长,预计2008年可编程逻辑器件(PLD)市场销售额增长7.6%,可编程器件的领头羊美国供应商赛灵思公司2008年营业收入预计升6.5%!在全球经济危机的背景下,这是非常骄人的业绩!也足见可编程器件在应用领域的热度没有受到经济危机的影响!这可能也解释了为什么那么多工程师对可编程器件感兴趣吧。 在与工程师的交流中,我发现,很多工程师非常需要普及以FPGA为代表的可编程器件的应用开发知识,也有很多工程师苦于进阶无门,缺乏专业、权威性的指导,在Google上搜索后,我发现很少有帮助工程师设计的FPGA电子书,即使有也只是介绍一些概念性的基础知识,缺乏实用性和系统性,于是,我萌生了出版一本指导工程师FPGA应用开发电子书的想法,而且这个电子书要突出实用性,让大家都可以免费下载,并提供许多技巧和资源信息,很高兴美国赛灵思公司对这个想法给予了大力支持,赛灵思公司亚太区市场经理张俊伟小姐和高级产品经理梁晓明先生对电子书提出了宝贵的意见,并提供了大量FPGA设计资源,也介绍了一些FPGA设计高手参与了电子书的编撰,很短的时间内,一个电子书项目团队组建起来,北京邮电大学的研究生田耘先生和赛灵思公司上海办事处的苏同麒先生等人都参与了电子书的编写,他们是有丰富设计经验的高手,在大家的共同努力下,这本凝结着智慧的FPGA电子书终于和大家见面了!我希望这本电子书可以成为对FPGA有兴趣或正在使用FPGA进行开发的工程师的手头设计宝典之一,也希望这个电子书可以对工程师们学习FPGA开发和进阶有实用的帮助!如果可能,未来我们还将出版后续版本!

    标签: FPGA 电子工程师 创新设计 宝典

    上传时间: 2013-10-21

    上传用户:copu

  • 采用高速串行收发器Rocket I/O实现数据率为2.5 G

    摘要: 串行传输技术具有更高的传输速率和更低的设计成本, 已成为业界首选, 被广泛应用于高速通信领域。提出了一种新的高速串行传输接口的设计方案, 改进了Aurora 协议数据帧格式定义的弊端, 并采用高速串行收发器Rocket I/O, 实现数据率为2.5 Gbps的高速串行传输。关键词: 高速串行传输; Rocket I/O; Aurora 协议 为促使FPGA 芯片与串行传输技术更好地结合以满足市场需求, Xilinx 公司适时推出了内嵌高速串行收发器RocketI/O 的Virtex II Pro 系列FPGA 和可升级的小型链路层协议———Aurora 协议。Rocket I/O支持从622 Mbps 至3.125 Gbps的全双工传输速率, 还具有8 B/10 B 编解码、时钟生成及恢复等功能, 可以理想地适用于芯片之间或背板的高速串行数据传输。Aurora 协议是为专有上层协议或行业标准的上层协议提供透明接口的第一款串行互连协议, 可用于高速线性通路之间的点到点串行数据传输, 同时其可扩展的带宽, 为系统设计人员提供了所需要的灵活性[4]。但该协议帧格式的定义存在弊端,会导致系统资源的浪费。本文提出的设计方案可以改进Aurora 协议的固有缺陷,提高系统性能, 实现数据率为2.5 Gbps 的高速串行传输, 具有良好的可行性和广阔的应用前景。

    标签: Rocket 2.5 高速串行 收发器

    上传时间: 2013-11-06

    上传用户:smallfish

  • 通信基础知识(华为、中兴内部资料)免费版

    通信

    标签: 通信基础知识 华为 中兴

    上传时间: 2013-11-22

    上传用户:wenyuoo