在早期阶段,直流调速系统在传动领域中占统治地位。然而,从60年代后期开始,交流电动机在工业应用领域正在取代直流电动机,交流传动变得越来越经济和受欢迎。永磁交流伺服系统作为电气传动领域的重要组成部分,在工业、农业、航空航天等领域发挥越来越重大的作用。永磁同步电动机以其特点广泛应用于中小功率传动场合,成为研究的重要领域。然而,永磁同步电动机具有较大的转动脉动,而对于这些应用场合,转矩平滑通常是基本要求。因此,对永磁交流伺服系统的应用,必须考虑其转矩脉动的抑制问题。本文针对电机传动系统中参数变化对电机性能的影响,以永磁同步电机为例,围绕如何通过参数辨识来提高永磁同步电动机的控制性能,借助自行开发的全数字永磁交流伺服系统平台,对永磁同步电动机的磁场定向控制,参数辨识,神经网络和扩展卡尔曼滤波在控制系统中的应用,抑制转矩脉动,提高系统性能几个方面展开深入的研究。 本文从永磁同步电动机及其控制系统的基本结构出发,对通过参数辨识抑制转矩脉动进行了较为细致的分析。针对不同情况,通过改进电机的控制系统,提出了多种参数辨识方法。主要内容如下: 1、基于定子磁链方程,建立了永磁同步电动机的一般数学模型。经坐标变换,得出在静止两相(α—β)坐标系和旋转两相(d—q)坐标系下永磁同步电动机电压方程和转矩方程。 2、分析了永磁同步电动机id=0矢量控制系统的工作原理,介绍了永磁同步电动基于磁场定向的矢量控制的基本概念。经对永磁同步电动机系统进行分析,推导并建立了id=0控制时整个电机系统的数学模型。 3、基于超稳定性理论的模型参考自适应控制原理,设计了一种模型参考自适应控制系统,考虑电机参数的时变性,对永磁交流伺服系统的绕组电阻和电机负载转矩辨识进行了研究,以保持系统的动态性能。利用Matlab/Simulink建立仿真模型,对控制性能进行了验证,仿真实验证明这种方法的可行性。 4、人工神经网络具有很强的学习性能,经过训练的多层神经网络能以任意精度逼近非线性函数,因此为非线性系统辨识提供了一个强有力的工具。本章针对永磁同步电机提出了一种以电机输出转速为目标函数的神经网络控制方案,同时应用人工神经网络理论建立和设计了负载转矩扰动辨识的算法以及相应的控制系统的补偿方法,并应用MATLAB软件进行了计算机仿真,仿真证明和传统的控制方法相比,以电机输出转速为指导值和目标函数的神经网络控制方案能有效地提高神经网络的收敛速度,能有效地改善控制系统的动态响应,具有跟踪性能好和鲁棒性较强等优点。 5、电机的参数会随着温升和磁路饱和发生变化,需进行在线实时辨识。本文利用电机的定子电流、电压和转速,采用递推最小二乘法进行在线参数辨识,该方法不需要观测的磁链信号,消除了磁链观测和参数辨识的耦合。电机状态方程由于存在状态变量的乘积项,对电机参数辨识以后,仍然是非线性方程,为了对电机状态方程进行状态估计,得到电机的参数辨识值,本文采用扩展卡尔曼滤波进行状态估计,对以上方法的仿真实验得到了满意的结果。 6、本文基于数字电机控制专用DSP自行开发了全数字永磁交流伺服系统平台,通过软件实现扩展卡尔曼滤波对电阻和磁链的估计,以及基于磁场定向的空间矢量控制算法,获得了令人满意的实验结果,证明扩展卡尔曼滤波算法对电阻和磁链的实时估计是很准确的,由此构成的永磁交流伺服系统具有良好的静、动态性能。
上传时间: 2013-07-28
上传用户:凤临西北
同步电动机以其可调的功率因数和输出转矩对电网电压波动不敏感等良好的运行性能,在大功率电气传动领域独占螯头。同步电机虽然有很多优点,但它的最大缺点是起动困难。目前,大功率同步电机的软起动大多采用静止变频器起动方式,但由于变频器多采用晶闸管作为功率器件从而要依靠电动机产生的反电势才能自行关断并且辅助设备较多。而一旦逆变器换流失败就会导致电动机起动失败。针对晶闸管不能自行关断的缺点,本文研究了一种以IGBT做为变频器功率器件的转速开环恒压频比控制的起动方法。 @@ 首先,根据同步电动机的工作原理对同步电动机的起动特性进行了详细分析,并对全压异步起动方法进行了仿真研究,得出了起动过程中电动机相电流、电磁转矩等参数的变化曲线。针对异步起动过程中定子绕组产生过大冲击电流的问题,提出了逐级变频的转速开环恒压频比控制同步电动机软起动方法。阐述了逐级变频开环控制同步电动机软起动的原理,即通过逐级改变变频器输出频率使转子转速跟随定子旋转磁场转速逐级升高至额定值。推导出起动过程中变频器逐级变化的频率与电动机转动惯量、电磁转矩等参数的关系式。通过对一台同步电动机做工频起动和低频起动的仿真研究,证明了同步电动机在低频下依靠同步电磁转矩自行起动的可行性。通过计算转子转速达到相应同步转速的时间来确定变频器逐级升高的电压频率随时间的变化规律。然后,在采用电压型交直交变频器作为同步电机变频电源的基础上,设计了恒压频比逐级变频软起动的控制方案,利用MATLAB/SIMULINK构建了转速开环恒压频比控制同步电动机软起动的数学模型,对同步电动机的起动过程进行仿真试验,并且分别对空载起动和负载起动过程进行了分析。仿真结果验证了转速开环控制同步电动机软起动的可行性。 @@ 针对同步电动机起动后的并网问题进行了理论分析,并研究了相应的并网控制方案。应用MATLAB/SIMULINK对并网过程进行仿真试验,给出并网瞬间电网电压、同步电机相电流等参数变化曲线,从而验证了并网方案的可行性。 @@ 最后,对所做工作进行了总结,并展望了大功率同步电动机的软起动技术。 @@关键词:同步电动机;软起动;变频器;恒压频比
上传时间: 2013-05-26
上传用户:assss
随着全球汽车保有量的与日俱增,能源危机和环境污染正逐渐成为制约世界汽车工业发展的瓶颈。而新兴的混合动力汽车(HEV)在节能和排放上的优越性正逐步体现出来。由于采用“油、电”配合的方式来驱动车体,其所搭载电动机及其驱动控制系统的研究则成为混合动力汽车研发中的关键技术之一,它直接决定着整车的动力性,燃油经济性和排放指标。 论文首先比较了常见的几种电动汽车的性能,概括了混合动力汽车的优点,介绍了混合动力汽车电机及其控制系统技术的发展现状;其次探讨了几种常用交流电动机的性能优劣,由于永磁同步电机具有高效、高功率密度以及良好的调速性能,本文混合动力汽车传动系统选用永磁同步电机;根据混合动力汽车所搭载电动机在功率和扭矩上的要求以及永磁同步电机在结构上的特点,选取了发动机电机系统的结构布置形式;论文建立了永磁同步电动机的数学模型,分析了永磁同步电动机矢量控制的原理;设计了基于TMS320F2812DSP的永磁同步电动机矢量控制系统,详细阐述了功率驱动电路,速度及位置检测电路,电流反馈及过流保护电路,CAN通讯模块等系统中重要的组成单元;软件采用模块化的结构,阐述了关键子程序如电流采集、位置检测程序和SVPWM产生子程序。 最后,搭建了实验平台,对硬件进行了调试和修改,通过样机及系统台架试验,取得了大量的实验数据,检验了所设计样机的特性,发现其制作过程中的不足,并实现了电机控制系统的闭环控制,从而达到了对混合动力汽车用永磁同步电动机控制系统的探索与研究的目的。
上传时间: 2013-05-23
上传用户:kkchan200
传统开环运行的三相混合式步进电动机驱动系统中存在着振荡和失步等不足之处。本文针对这种情况,通过对理想化三相混合式步进电动机数学模型的分析,把三相混合式步进电动机视为一种低速同步电动机。同时,结合电流跟踪型PWM控制方式及恒流斩波驱动的工作原理,设计了基于数字信号处理器TMS320F2812的全数字三相混合式步进电动机正弦波细分驱动系统。 首先,本文从三相混合式步进电动机的数学模型出发,对步进电动机的细分驱动方式进行了研究,分析了步进电动机连续均匀旋转的工作机理。然后分析了步进电动机的运行特性及细分控制的必要性,进而分析了细分驱动对改善步进电动机运行性能的作用,并针对细分运行的一些不足之处,提出了均匀细分恒转矩控制的方案。理论分析表明,在混合式步进电动机的三相定子绕组中通以互差120°的正弦波电流时,可得到类似同步机的转矩特性,使电动机均匀旋转。 本系统硬件电路以TMS320F2812为核心,采用正弦波细分和电流跟踪型脉宽调制(PWM)技术实现三相混合式步进电动机的细分控制,使三相定子绕组电流严格跟踪电流给定信号变化。应用IR公司的IR2130集成驱动芯片进行了步进电动机驱动系统的功率驱动环节的设计,节省了板上空间,减小了装置体积。同时从装置可靠性出发,设计了一套安全可靠的硬件保护电路。 实验结果表明,本文所设计的三相混合式步进电动机正弦波细分驱动器具有优良的控制性能。细分运行时减弱了混合式步进电动机的低速振动和噪声,使电动机运行平稳,并改善了其低频运行性能。
上传时间: 2013-06-27
上传用户:ca05991270
本文以电机控制DSPTMS320LF2407为核心,结合相关外围电路,运用新型SVPWM控制方法,设计电梯专用变频器。为了达到电梯专用变频器大转矩、高性能的要求,在硬件上提高系统的实时性、抗干扰性和高精度性;在软件上采用新型SVPWM控制方法,以消除死区的负面影响,另外单神经元PID控制器应用于速度环,对速度的调节作用有明显改善。通过软硬件结合的方式,改善电机输出转矩,使电梯控制系统的性能得到提高。 系统主电路主要由三部分组成:整流部分、中间滤波部分和逆变部分,分别用6RI75G-160整流桥模块、电解电容电路和7MBP50RA120IPM模块实现。并设计有起动时防止冲击电流的保护电路,以及防止过压、欠压的保护电路。其中,对逆变模块IPM的驱动控制是控制电路的核心,也是系统实现的主要部分。控制电路以DSP为核心,由IPM驱动隔离控制电路、转速位置检测电路、电流检测电路、电源电路、显示电路和键盘电路组成。对IPM驱动、隔离、控制的效果,直接影响系统的性能,反映了变频器的性能,所以这部分是改善变频器性能的关键部分。另外,本课题拟定的被控对象是永磁同步电动机(PMSM),要对系统实现SVPWM控制,依赖于转子位置的准确、实时检测,只有这样,才能实现正确的矢量变换,准确的输出PWM脉冲,使合成矢量的方向与磁场方向保持实时的垂直,达到良好的控制性能,因此,转子位置检测是提高变频器性能的一个重要环节。 系统采用的控制方式是SVPWM控制。本文从SVPWM原理入手,分析了死区时间对SVPWM控制的负面作用,采用了一种新型SVPWM控制方法,它将SVPWM的180度导通型和120度导通型结合起来,从而达到既可以消除死区影响,又可以提高电源利用率的目的。另外,在速度调节环节,采用单神经元PID控制器,通过反复的仿真证明,在调速比不是很大的情况下,其对速度环的调节作用明显优于传统PID控制器。 通过实验证明,系统基本上达到高性能的控制要求,适合于电梯控制系统。
上传时间: 2013-05-21
上传用户:trepb001
在交流伺服系统中,永磁同步电动机(PMSM)作为执行元件具有高效、节能、便于维修的特点,广泛应用于数控机床的进给伺服单元及机器人等需精确定位的装置中.由于PMSM驱动系统受电机参数变化、外部负载扰动、对象未建模和非线性动态特性等不确定性的影响,因此,采用并发展先进的控制技术,不断改善与提高位置伺服系统的稳态精度、动态响应特性及对系统参数变化的自适应性和抗干扰性是一个必然趋势.该文对PMSM的控制机理和特性作了较为深入的分析;建立了PMSM的数学模型,并采用了id=0的矢量控制策略;对控制系统组成及控制方式作了分析和比较,在此基础上建立了电流环、速度环和位置环的三闭环控制系统,对作为反馈主回路的位置环采用了模糊CMAC神经网络控制方法,该方法兼具模糊控制器的快速性和神经网络的自学习能力;构建了针对PMSM位置伺服系统的模糊CMAC控制器结构及其相应的算法;利用先进的计算机仿真工具(Matlab下的Simulink)对所提出的控制策略进行了数字仿真和分析;仿真和实验结果表明本文所提出的控制策略对PMSM位置伺服系统进行控制具有良好的鲁棒性能和快速性.该文首次提出将兼具快速性和自学习能力的模糊CMAC神经网络控制器应用于PMSM位置伺服系统中,可以说该文为发展高性能PMSM位置伺服系统提供了充分的技术资料,也为今后进一步提高其性能提出了新的思路和方法.
上传时间: 2013-04-24
上传用户:qw12
稀土永磁直流无刷电动机实际上是以电子换向代替机械换向的直流电动机,因而保持了直流电动机的优良性能,具有较好的起动和调速性能,又因它无需机械换向使电机的结构简单,可以根本上克服一般有刷电动机易于产生换向火花的弊病,在航天、机器人、数控机床等许多工业领域已得到广泛的应用.本文从稀土永磁无刷直流电动机的基本工作原理出发,分析了稀土永磁无刷电动机同普通无刷直流电动机的区别;阐述了稀土永磁电动机设计原理,并给出设计方法,然后运用实例来说明.在此基础上介绍遗传算法的特点,用遗传算法对稀土永磁电动机进行优化设计,达到预期的结果.最后,讨论了电机的结构参数对电机性能的影响.通过对稀土永磁直流无刷电动机的设计,分析在具体设计时所要解决一些疑难问题,对其特点进行总结.用遗传算法优化后,得出一些有用的结论.
上传时间: 2013-04-24
上传用户:chenjjer
由于永磁伺服电机具有转子转动惯量 小,响应速度快,效率高,功率密度高,电机体积小,消除电刷而减少噪音和维护等其他电机难以比拟的优点,在高性能位置伺服领域,尤其为伺服电机组成的伺服系统应用越来越广泛。 永磁无刷电机有两种形式:方波式和正弦波式。本文主要研究以pmsm 为伺服电机的伺服系统 目前实现永磁同步电动机的控制主要采用dsp、dsp+fpga和dsp+asic三种途径。而前两种方式实现位置控制编程量较大,美国国际整流器公司针对高性能交流伺服驱动要求,基于fpga技术开发出了完整的闭环电流控制和速度控制的伺服系统单片解决方案—irmck201。本文就是基于这种数字运动控制芯片,设计了dsp和irmck201的交流伺服控制系统。该系统具有性能优越,结构简单,编程任务小,开发周期短等优点,对其他交流位置伺服控制系统也具有很好的推广意义。
上传时间: 2013-06-07
上传用户:zgu489
MSP430系列flash型超低功耗16位单片机MSP430系列单片机在超低功耗和功能集成等方面有明显的特点。该系列单片机自问世以来,颇受用户关注。在2000年该系列单片机又出现了几个FLASH型的成员,它们除了仍然具备适合应用在自动信号采集系统、电池供电便携式装置、超长时间连续工作的设备等领域的特点外,更具有开发方便、可以现场编程等优点。这些技术特点正是应用工程师特别感兴趣的。《MSP430系列FLASH型超低功耗16位单片机》对该系列单片机的FLASH型成员的原理、结构、内部各功能模块及开发方法与工具作详细介绍。MSP430系列FLASH型超低功耗16位单片机 目录 第1章 引 论1.1 MSP430系列单片机1.2 MSP430F11x系列1.3 MSP430F11x1系列1.4 MSP430F13x系列1.5 MSP430F14x系列第2章 结构概述2.1 引 言2.2 CPU2.3 程序存储器2.4 数据存储器2.5 运行控制2.6 外围模块2.7 振荡器与时钟发生器第3章 系统复位、中断及工作模式3.1 系统复位和初始化3.1.1 引 言3.1.2 系统复位后的设备初始化3.2 中断系统结构3.3 MSP430 中断优先级3.3.1 中断操作--复位/NMI3.3.2 中断操作--振荡器失效控制3.4 中断处理 3.4.1 SFR中的中断控制位3.4.2 中断向量地址3.4.3 外部中断3.5 工作模式3.5.1 低功耗模式0、1(LPM0和LPM1)3.5.2 低功耗模式2、3(LPM2和LPM3)3.5.3 低功耗模式4(LPM4)22 3.6 低功耗应用的要点23第4章 存储空间4.1 引 言4.2 存储器中的数据4.3 片内ROM组织4.3.1 ROM 表的处理4.3.2 计算分支跳转和子程序调用4.4 RAM 和外围模块组织4.4.1 RAM4.4.2 外围模块--地址定位4.4.3 外围模块--SFR4.5 FLASH存储器4.5.1 FLASH存储器的组织4.5.2 FALSH存储器的数据结构4.5.3 FLASH存储器的控制寄存器4.5.4 FLASH存储器的安全键值与中断4.5.5 经JTAG接口访问FLASH存储器39第5章 16位CPU5.1 CPU寄存器5.1.1 程序计数器PC5.1.2 系统堆栈指针SP5.1.3 状态寄存器SR5.1.4 常数发生寄存器CG1和CG25.2 寻址模式5.2.1 寄存器模式5.2.2 变址模式5.2.3 符号模式5.2.4 绝对模式5.2.5 间接模式5.2.6 间接增量模式5.2.7 立即模式5.2.8 指令的时钟周期与长度5.3 指令组概述5.3.1 双操作数指令5.3.2 单操作数指令5.3.3 条件跳转5.3.4 模拟指令的简短格式5.3.5 其他指令第6章 硬件乘法器6.1 硬件乘法器6.2 硬件乘法器操作6.2.1 无符号数相乘(16位×16位、16位×8位、8位×16位、8位×8位)6.2.2 有符号数相乘(16位×16位、16位×8位、8位×16位、8位×8位)6.2.3 无符号数乘加(16位×16位、16位×8位、8位×16位、8位×8位)6.2.4 有符号数乘加(16位×16位、16位×8位、8位×16位、8位×8位)6.3 硬件乘法器寄存器6.4 硬件乘法器的软件限制6.4.1 寻址模式6.4.2 中断程序6.4.3 MACS第7章 基础时钟模块7.1 基础时钟模块7.2 LFXT1与XT27.2.1 LFXT1振荡器7.2.2 XT2振荡器7.2.3 振荡器失效检测7.2.4 XT振荡器失效时的DCO7.3 DCO振荡器7.3.1 DCO振荡器的特性7.3.2 DCO调整器7.4 时钟与运行模式7.4.1 由PUC启动7.4.2 基础时钟调整7.4.3 用于低功耗的基础时钟特性7.4.4 选择晶振产生MCLK7.4.5 时钟信号的同步7.5 基础时钟模块控制寄存器7.5.1 DCO时钟频率控制7.5.2 振荡器与时钟控制寄存器7.5.3 SFR控制位第8章 输入输出端口8.1 引 言8.2 端口P1、P28.2.1 P1、P2的控制寄存器8.2.2 P1、P2的原理8.2.3 P1、P2的中断控制功能8.3 端口P3、P4、P5和P68.3.1 端口P3、P4、P5和P6的控制寄存器8.3.2 端口P3、P4、P5和P6的端口逻辑第9章 看门狗定时器WDT9.1 看门狗定时器9.2 WDT寄存器9.3 WDT中断控制功能9.4 WDT操作第10章 16位定时器Timer_A10.1 引 言10.2 Timer_A的操作10.2.1 定时器模式控制10.2.2 时钟源选择和分频10.2.3 定时器启动10.3 定时器模式10.3.1 停止模式10.3.2 增计数模式10.3.3 连续模式10.3.4 增/减计数模式10.4 捕获/比较模块10.4.1 捕获模式10.4.2 比较模式10.5 输出单元10.5.1 输出模式10.5.2 输出控制模块10.5.3 输出举例10.6 Timer_A的寄存器10.6.1 Timer_A控制寄存器TACTL10.6.2 Timer_A寄存器TAR10.6.3 捕获/比较控制寄存器CCTLx10.6.4 Timer_A中断向量寄存器10.7 Timer_A的UART应用 第11章 16位定时器Timer_B11.1 引 言11.2 Timer_B的操作11.2.1 定时器长度11.2.2 定时器模式控制11.2.3 时钟源选择和分频11.2.4 定时器启动11.3 定时器模式11.3.1 停止模式11.3.2 增计数模式11.3.3 连续模式11.3.4 增/减计数模式11.4 捕获/比较模块11.4.1 捕获模式11.4.2 比较模式11.5 输出单元11.5.1 输出模式11.5.2 输出控制模块11.5.3 输出举例11.6 Timer_B的寄存器11.6.1 Timer_B控制寄存器TBCTL11.6.2 Timer_B寄存器TBR11.6.3 捕获/比较控制寄存器CCTLx11.6.4 Timer_B中断向量寄存器第12章 USART通信模块的UART功能12.1 异步模式12.1.1 异步帧格式12.1.2 异步通信的波特率发生器12.1.3 异步通信格式12.1.4 线路空闲多机模式12.1.5 地址位多机通信格式12.2 中断和中断允许12.2.1 USART接收允许12.2.2 USART发送允许12.2.3 USART接收中断操作12.2.4 USART发送中断操作12.3 控制和状态寄存器12.3.1 USART控制寄存器UCTL12.3.2 发送控制寄存器UTCTL12.3.3 接收控制寄存器URCTL12.3.4 波特率选择和调整控制寄存器12.3.5 USART接收数据缓存URXBUF12.3.6 USART发送数据缓存UTXBUF12.4 UART模式,低功耗模式应用特性12.4.1 由UART帧启动接收操作12.4.2 时钟频率的充分利用与UART的波特率12.4.3 多处理机模式对节约MSP430资源的支持12.5 波特率计算 第13章 USART通信模块的SPI功能13.1 USART同步操作13.1.1 SPI模式中的主模式13.1.2 SPI模式中的从模式13.2 中断与控制功能 13.2.1 USART接收/发送允许位及接收操作13.2.2 USART接收/发送允许位及发送操作13.2.3 USART接收中断操作13.2.4 USART发送中断操作13.3 控制与状态寄存器13.3.1 USART控制寄存器13.3.2 发送控制寄存器UTCTL13.3.3 接收控制寄存器URCTL13.3.4 波特率选择和调制控制寄存器13.3.5 USART接收数据缓存URXBUF13.3.6 USART发送数据缓存UTXBUF第14章 比较器Comparator_A14.1 概 述14.2 比较器A原理14.2.1 输入模拟开关14.2.2 输入多路切换14.2.3 比较器14.2.4 输出滤波器14.2.5 参考电平发生器14.2.6 比较器A中断电路14.3 比较器A控制寄存器14.3.1 控制寄存器CACTL114.3.2 控制寄存器CACTL214.3.3 端口禁止寄存器CAPD14.4 比较器A应用14.4.1 模拟信号在数字端口的输入14.4.2 比较器A测量电阻元件14.4.3 两个独立电阻元件的测量系统14.4.4 比较器A检测电流或电压14.4.5 比较器A测量电流或电压14.4.6 测量比较器A的偏压14.4.7 比较器A的偏压补偿14.4.8 增加比较器A的回差第15章 模数转换器ADC1215.1 概 述15.2 ADC12的工作原理及操作15.2.1 ADC内核15.2.2 参考电平15.3 模拟输入与多路切换15.3.1 模拟多路切换15.3.2 输入信号15.3.3 热敏二极管的使用15.4 转换存储15.5 转换模式15.5.1 单通道单次转换模式15.5.2 序列通道单次转换模式15.5.3 单通道重复转换模式15.5.4 序列通道重复转换模式15.5.5 转换模式之间的切换15.5.6 低功耗15.6 转换时钟与转换速度15.7 采 样15.7.1 采样操作15.7.2 采样信号输入选择15.7.3 采样模式15.7.4 MSC位的使用15.7.5 采样时序15.8 ADC12控制寄存器15.8.1 控制寄存器ADC12CTL0和ADC12CTL115.8.2 转换存储寄存器ADC12MEMx15.8.3 控制寄存器ADC12MCTLx15.8.4 中断标志寄存器ADC12IFG.x和中断允许寄存器ADC12IEN.x15.8.5 中断向量寄存器ADC12IV15.9 ADC12接地与降噪第16章 FLASH型芯片的开发16.1 开发系统概述16.1.1 开发技术16.1.2 MSP430系列的开发16.1.3 MSP430F系列的开发16.2 FLASH型的FET开发方法16.2.1 MSP430芯片的JTAG接口16.2.2 FLASH型仿真工具16.3 FLASH型的BOOT ROM16.3.1 标准复位过程和进入BSL过程16.3.2 BSL的UART协议16.3.3 数据格式16.3.4 退出BSL16.3.5 保护口令16.3.6 BSL的内部设置和资源附录A 寻址空间附录B 指令说明B.1 指令汇总B.2 指令格式B.3 不增加ROM开销的模拟指令B.4 指令说明(字母顺序)B.5 用几条指令模拟的宏指令附录C MSP430系列单片机参数表附录D MSP430系列单片机封装形式附录E MSP430系列器件命名
上传时间: 2014-04-28
上传用户:sssnaxie
具有梯形反电动势的永磁同步电动机通常被称为无刷直流电动机,它具有结构简单、体积小、重量轻、效率高、高功率密度、启动扭矩大、惯量小和响应快等其它种类直流电机无法比拟的特性。采用电子换向器替代了传统直流电动机的机械换向装置,从而克服了电刷和换向器所引起的噪声、火花、电磁干扰、寿命短等一系列弊病。由于无刷直流电动机既具备交流电动机的结构简单、运行可靠、维护方便等一系列优点,又具 有直流电动机的运行效率高、无励磁损耗以及调速性能好等诸多优点,故其在在家用消费类产品(空调、冰箱、洗衣机)和IT周边产品(打印机、软驱、硬驱)中得到广泛的应用。 C8051F单片机是美国Silabs公司推出的一种与51系列单片机内核兼容的单片机,具有高速、高性能、高集成度。以C8051F020为例,具有如下特点: C8051F020片上系统单片机片内资源: 一、模块外设 (1)逐次逼近型8路12位ADC0 转换速率最大100ksps 可编程增益放大器PGA 温度传感器 (2)8路8位ADC1输入与P1口复用 转换速率500ksps 可编程增益放大器PGA (3)两个12 位DAC (4)两个模拟电压比较器 (5)电压基准内部提供2.43V 外部基准可输入 (6)精确的VDD监视器 二、高速8051微控制器内核 流水线式指令结构速度可达25MIPS 22个矢量中断源 三、存储器 片内4352字节数据RAM 64KBFlash程序存储器可作非易失性存储
上传时间: 2013-12-21
上传用户:bnfm