#include "iostream" using namespace std; class Matrix { private: double** A; //矩阵A double *b; //向量b public: int size; Matrix(int ); ~Matrix(); friend double* Dooli(Matrix& ); void Input(); void Disp(); }; Matrix::Matrix(int x) { size=x; //为向量b分配空间并初始化为0 b=new double [x]; for(int j=0;j<x;j++) b[j]=0; //为向量A分配空间并初始化为0 A=new double* [x]; for(int i=0;i<x;i++) A[i]=new double [x]; for(int m=0;m<x;m++) for(int n=0;n<x;n++) A[m][n]=0; } Matrix::~Matrix() { cout<<"正在析构中~~~~"<<endl; delete b; for(int i=0;i<size;i++) delete A[i]; delete A; } void Matrix::Disp() { for(int i=0;i<size;i++) { for(int j=0;j<size;j++) cout<<A[i][j]<<" "; cout<<endl; } } void Matrix::Input() { cout<<"请输入A:"<<endl; for(int i=0;i<size;i++) for(int j=0;j<size;j++){ cout<<"第"<<i+1<<"行"<<"第"<<j+1<<"列:"<<endl; cin>>A[i][j]; } cout<<"请输入b:"<<endl; for(int j=0;j<size;j++){ cout<<"第"<<j+1<<"个:"<<endl; cin>>b[j]; } } double* Dooli(Matrix& A) { double *Xn=new double [A.size]; Matrix L(A.size),U(A.size); //分别求得U,L的第一行与第一列 for(int i=0;i<A.size;i++) U.A[0][i]=A.A[0][i]; for(int j=1;j<A.size;j++) L.A[j][0]=A.A[j][0]/U.A[0][0]; //分别求得U,L的第r行,第r列 double temp1=0,temp2=0; for(int r=1;r<A.size;r++){ //U for(int i=r;i<A.size;i++){ for(int k=0;k<r-1;k++) temp1=temp1+L.A[r][k]*U.A[k][i]; U.A[r][i]=A.A[r][i]-temp1; } //L for(int i=r+1;i<A.size;i++){ for(int k=0;k<r-1;k++) temp2=temp2+L.A[i][k]*U.A[k][r]; L.A[i][r]=(A.A[i][r]-temp2)/U.A[r][r]; } } cout<<"计算U得:"<<endl; U.Disp(); cout<<"计算L的:"<<endl; L.Disp(); double *Y=new double [A.size]; Y[0]=A.b[0]; for(int i=1;i<A.size;i++ ){ double temp3=0; for(int k=0;k<i-1;k++) temp3=temp3+L.A[i][k]*Y[k]; Y[i]=A.b[i]-temp3; } Xn[A.size-1]=Y[A.size-1]/U.A[A.size-1][A.size-1]; for(int i=A.size-1;i>=0;i--){ double temp4=0; for(int k=i+1;k<A.size;k++) temp4=temp4+U.A[i][k]*Xn[k]; Xn[i]=(Y[i]-temp4)/U.A[i][i]; } return Xn; } int main() { Matrix B(4); B.Input(); double *X; X=Dooli(B); cout<<"~~~~解得:"<<endl; for(int i=0;i<B.size;i++) cout<<"X["<<i<<"]:"<<X[i]<<" "; cout<<endl<<"呵呵呵呵呵"; return 0; }
标签: 道理特分解法
上传时间: 2018-05-20
上传用户:Aa123456789
AR0231AT7C00XUEA0-DRBR(RGB滤光)安森美半导体推出采用突破性减少LED闪烁 (LFM)技术的新的230万像素CMOS图像传感器样品AR0231AT,为汽车先进驾驶辅助系统(ADAS)应用确立了一个新基准。新器件能捕获1080p高动态范围(HDR)视频,还具备支持汽车安全完整性等级B(ASIL B)的特性。LFM技术(专利申请中)消除交通信号灯和汽车LED照明的高频LED闪烁,令交通信号阅读算法能于所有光照条件下工作。AR0231AT具有1/2.7英寸(6.82 mm)光学格式和1928(水平) x 1208(垂直)有源像素阵列。它采用最新的3.0微米背照式(BSI)像素及安森美半导体的DR-Pix™技术,提供双转换增益以在所有光照条件下提升性能。它以线性、HDR或LFM模式捕获图像,并提供模式间的帧到帧情境切换。 AR0231AT提供达4重曝光的HDR,以出色的噪声性能捕获超过120dB的动态范围。AR0231AT能同步支持多个摄相机,以易于在汽车应用中实现多个传感器节点,和通过一个简单的双线串行接口实现用户可编程性。它还有多个数据接口,包括MIPI(移动产业处理器接口)、并行和HiSPi(高速串行像素接口)。其它关键特性还包括可选自动化或用户控制的黑电平控制,支持扩频时钟输入和提供多色滤波阵列选择。封装和现状:AR0231AT采用11 mm x 10 mm iBGA-121封装,现提供工程样品。工作温度范围为-40℃至105℃(环境温度),将完全通过AEC-Q100认证。
标签: 图像传感器
上传时间: 2022-06-27
上传用户:XuVshu
便携式B型超声诊断仪具有无创伤、简便易行、相对价廉等优势,在临床中越来越得到广泛的应用。它将超声波技术、微电子技术、计算机技术、机械设计与制造及生物医学工程等技术融合在一起。开展该课题的研究对提高临床诊断能力和促进我国医疗事业的发展具有重要的意义。 便携式B型超声诊断仪由人机交互系统、探头、成像系统、显示系统构成。其基本工作过程是:首先人机交互系统接收到用户通过键盘或鼠标发出的命令,然后成像系统根据命令控制探头发射超声波,并对回波信号处理、合成图像,最后通过显示系统完成图像的显示。 成像系统作为便携式B型超声诊断仪的核心对图像质量有决定性影响,但以前研制的便携式B型超声诊断仪的成像系统在三个方面存在不足:第一、采用的是单片机控制步进电机,控制精度不高,导致成像系统采样不精确;第二、采用的数字扫描变换算法太粗糙,影响超声图像的分辨率;第三、它的CPU多采用的是51系列单片机,测量速度太慢,同时也不便于系统升级和扩展。 针对以上不足,提出了基于FPGA的B型超声成像系统解决方案,采用Altera公司的EP2C5Q208C8芯片实现了步进电机步距角的细分,使电机旋转更匀速,提高了采样精度;提出并采用DSTI-ULA算法(Uniform Ladder Algorithm based on Double Sample and Trilinear Interotation)在FPGA内实现数字扫描变换,提高了图像分辨率;人机交互系统采用S3C2410-AL作为CPU,改善了测量速度和系统的扩展性。 通过对系统硬件电路的设计、制作,软件的编写、调试,结果表明,本文所设计的便携式B型超声成像系统图像分辨率高、测量速度快、体积小、操作方便。本文所设计的便携式B型超声诊断仪可在野外作业和抢险(诸如地震、抗洪)中发挥作用,同时也可在乡村诊所中完成对相关疾病的诊断工作。
上传时间: 2013-05-18
上传用户:helmos
超声理论与技术的快速发展,使超声设备不断更新,超声检查已成为预测和评价疾病及其治疗结果不可缺少的重要方法。超声诊断技术不仅具有安全、方便、无损、廉价等优点,其优越性还在于它选用诊断参数的多样性及其在工程上实现的灵活性。 全数字B超诊断仪基于嵌入式ARM9+FPGA硬件平台、LINUX嵌入式操作系统,是一种新型的、操作方便的、技术含量高的机型。它具有现有黑白B超的基本功能,能够对超声回波数据进行灵活的处理,从而使操作更加方便,图象质量进一步提高,并为远程医疗、图像存储、拷贝等打下基础,是一种很有发展前景、未来市场的主打产品。全数字B型超声诊断仪的基本技术特点是用数字硬件电路来实现数据量极其庞大的超声信息的实时处理,它的实现主要倚重于FPGA技术。现在FPGA已经成为多种数字信号处理(DSP)应用的强有力解决方案。硬件和软件设计者可以利用可编程逻辑开发各种DSP应用解决方案。可编程解决方案可以更好地适应快速变化的标准、协议和性能需求。 本论文首先阐述了医疗仪器发展现状和嵌入式计算机体系结构及发展状况,提出了课题研究内容和目标。然后从B超诊断原理及全数字B超诊断仪设计入手深入分析了B型超声诊断仪的系统的硬件体系机构。对系统的总体框架和ARM模块设计做了描述后,接着分析了超声信号进行数字化处理的各个子模块、可编程逻辑器件的结构特点、编程原理、设计流程以及ARM处理模块和FPGA模块的主要通讯接口。接着,本论文介绍了基于ARM9硬件平台的LINUX嵌入式操作系统的移植和设备驱动的开发,详细描述了B型超声诊断仪的软件环境的架构及其设备驱动的详细设计。最后对整个系统的功能和特点进行了总结和展望。
上传时间: 2013-05-28
上传用户:sssnaxie
用汇编编写的河内塔程序 将第一柱a上n-1个盘借助第二柱c移到第三柱b 把a上剩下的一个盘移到c 将n-1个盘从b借助a移到第三柱c 这三步是图示河内塔的根本方法 功能一:自己动手移动河内塔 先按左右键选择要移的盘,按箭头上键确定 再按左右键移到要的盘 如此,再根据河内塔的规则确定较好的次数step2 功能二:图示河内塔移动过程 根据河内塔的基本方法,确定图象,按任意键选下一步,(开始时输入level)
上传时间: 2015-01-10
上传用户:chenbhdt
A.执行SPLIB B.执行SPDOS C.装载拼音模块D.装载五笔字型输入模块32.在汉字输入状态下, 按下Shift+A组合键后,输入了_______。 ... A.按原代码方式B.按指定字体C.按标准方式D. 按分栏方式41.FoxBASE启动后,在圆点"."提示符下,执行命令文件MAIN.
上传时间: 2015-04-02
上传用户:极客
Haskell 中文教程1-3章(flw译) 纯粹的函数型编程语言。以著名逻辑学家 Haskell B. Curry 的名字命名。 最初的目的是想要设计出满足下面这些要求的语言: 1,它必须能够适合教学、研究、应用开发,包括一些大系统的构造。 2,它必须能够使用形式语言来准确描述。 3,它必须是自由免费的,任何人只要愿意都可以获取、使用和再次发布它。 4,它必须建立在大家一致认可的基础上。 5,它应该能够消除目前的函数型编程语言的差异。
上传时间: 2014-01-10
上传用户:685
计算机控制技术.了解步进电机控制的基本原理; b.掌握控制步进电机转动的编程方法。
上传时间: 2014-01-20
上传用户:咔乐坞
%直接型到并联型的转换 % %[C,B,A]=dir2par(b,a) %C为当b的长度大于a时的多项式部分 %B为包含各bk的K乘2维实系数矩阵 %A为包含各ak的K乘3维实系数矩阵 %b为直接型分子多项式系数 %a为直接型分母多项式系数 %
上传时间: 2014-01-20
上传用户:lizhen9880
直接型到级联型的形式转换 % [b0,B,A]=dir2cas(b,a) %b 为直接型的分子多项式系数 %a 为直接型的分母多项式系数 %b0为增益系数 %B 为包含各bk的K乘3维实系数矩阵 %A 为包含各ak的K乘3维实系数矩阵 %
上传时间: 2013-12-30
上传用户:agent