以单片机控制A/D转换器TLC549为例,对A/D转换器的主要技术指标进行了分析研究,在Proteus平台下,完成了A/D转换电路的构建,采用器件工作时序方式进行程序编写,借助仿真图表、虚拟仪器等工具对A/D转换的数据进行测量并对失调误差、增益误差、微分非线性、积分非线性和转换时间等重要参数进行了详细分析。结果表明:使用Proteus软件可对A/D转换过程进行定性分析,将抽象的A/D转换器技术指标直观化、形象化展现出来,有助于学生更好地理解A/D转换过程。The main technical indicators of A/D converter were analyzed and studied with an example from A/D converter TLC2543 which is controlled by using SCM.It was completed the construction of the A/D converter circuit under the Proteus software.The programming based on the operation sequence of the chip is put forward.With the aid of the simulation tools such as virtual instrument,simulation charts provided by Proteus,the important parameters of circuit such as offset error,gain error,differential nonlinearity(DNL),integral nonlinearity (INL) and conversion time are analyzed detailedly.Simulation results show that the A/D conversion process can be qualitatively analyzed and visualized the abstract indicators of A/D.The system can help students better to understand the SCM conversion process.
上传时间: 2022-04-04
上传用户:
本文主要论述了一种基于51单片机为核心控制器的数控直流电源的设计原理和实现方法。该电源具有电压可预置、可步进调整、输出的电压信号和电流信号可同时显示功能。文章介绍了系统的总体设计方案,其主要由微控制器模块、稳压控制模块、电压/电流采样模块、显示模块、键盘模块、电源模块五部分构成。该系统原理是以STC89C52单片机为控制单元,以数模转换芯片DAC0832输出参考电压控制电压转换模块LM317输出电压大小,同时输出稳压、恒流采用模数转换芯片ADC0832对采样的电压、电流转换为数字信号,再通过单片机实现闭环控制。文章最后对数控直流电源的主要性能参数进行了测定和总结,并对其发展前景进行了展望。关键词单片机(MCU):数模转换器(DAC);模数转换器(ADC):闭环控制电源技术尤其是数控电源技术是一门实践性很强的工程技术,服务于各行各业。当今电源技术融合了电气、电子、系统集成、控制理论、材料等诸多学科领域。直流稳压电源是电子技术常用的仪器设备之一,广泛的应用于教学、科研等领域,是电子实验员、电子设计人员及电路开发部门进行实验操作和科学研究所不可缺少的电子仪器。在电子电路中,通常都需要电压稳定的直流电源来供电。而整个稳压过程是由电源变压器、整流、滤波、稳压等四部分组成。然而这种传统的直流稳压电源功能简单、不好控制、可靠性低、干扰大、精度低且体积大、复杂度高。普通的直流稳压电源品种有很多,但均存在以下二个问题:输出电压是通过粗调(波段开关)及细调(电位器)来调节。这样,当输出电压需要精确输出,或需要在一个小范围内改变时,困难就较大。另外,随着使用时间的增加,波段开关及电位器难免接触不良,对输出会有影响。稳压方式均是采用串联型稳压电路,对过载进行限流或截流型保护,电路构成复杂,稳压精度也不高。
上传时间: 2022-04-05
上传用户:wangshoupeng199
产品型号:VK3603 产品品牌:VINKA/永嘉微电 封装形式:ESOP8 产品年份:新年份 联 系 人:陈锐鸿 Q Q:361 888 5898 联系手机:188 2466 2436(信) 概述: VK3603具有3个触摸按键,可用来检测外部触摸按键上人手的触摸动作。该芯片具有较 高的集成度,仅需极少的外部组件便可实现触摸按键的检测。 提供了3路直接输出功能。芯片内部采用特殊的集成电路,具有高电源电压抑制比,可 减少按键检测错误的发生,此特性保证在不利环境条件的应用中芯片仍具有很高的可靠性。 此触摸芯片具有自动校准功能,低待机电流,抗电压波动等特性,为各种触摸按键+IO 输出的应用提供了一种简单而又有效的实现方法。 特点: • 工作电压 2.4-5.5V • 待机电流7uA/3.3V,14uA/5V • 上电复位功能(POR) • 低压复位功能(LVR) • 触摸输出响应时间: 工作模式 48mS 待机模式160mS • CMOS输出,低电平有效,支持多键 • 有效键最长输出16S • 无触摸4S自动校准 • 专用脚接对地电容调节灵敏度(1-47nF) • 各触摸通道单独接对地小电容微调灵敏度(0-50pF) • 上电0.25S内为稳定时间,禁止触摸 • 封装SOP8-EP(150mil)(4.9mm x 3.9mm PP=1.27mm) 产品型号:VK3601 产品品牌:VINKA/永嘉微电 封装形式:SOT23-6 产品年份:新年份 联 系 人:陈锐鸿 概述: VK3601 是一款单触摸通道带1个逻辑控制输出的电容式触摸芯片。 特点和优势: • 可通过触摸实现各种逻辑功能控制,操作简单、方便实用 • 可在有介质(如玻璃、亚克力、塑料、陶瓷等)隔离保护的情况下实现触摸功能,安全性高。 • 应用电压范围宽,可在 2.4~5.5V 之间任意选择 • 应用电路简单,外围器件少,加工方便,成本低 • 低待机工作电流(没有负载) @VDD=3.3V,典型值 4uA,最大值 8uA。@VDD=5.0V,典型值 8uA,最大值 16Ua • 专用管脚接外部电容(1nF-47nF)调灵敏度 • 抗电源干扰及手机干扰特性好。EFT 可以达到±2KV 以上;近距离、多角度手机干扰情况下, 触摸响应灵敏度及可靠性不受影响。 • 上电后的初始输出状态由上电前 AHLB 的输入状态决定。AHLB 管脚接 VDD(高电平)或者悬空上电,上电后SO 输出高电平;AHLB 管脚接 GND(低电平)上电,上电后SO输出低电平。•按住 TI,对应 SO的输出状态翻转;松开后回复初始状态 • 上电后约为0.25秒的稳定时间,此期间内不要触摸检测点,此时所有功能都被禁止 • 自动校准功能刚上电的4秒内约62.5毫秒刷新一次参考值,若在上电后的4秒内有触摸按键或4秒后仍未触摸按键,则重新校准周期切换时间约为1秒 • 4S无触摸进入待机模式 ————————————————— 标准触控IC-电池供电系列: VKD223EB --- 工作电压/电流:2.0V-5.5V/5uA-3V 感应通道数:1 通讯界面 最长回应时间快速模式60mS,低功耗模式220ms 封装:SOT23-6 VKD223B --- 工作电压/电流:2.0V-5.5V/5uA-3V 感应通道数:1 通讯界面 最长回应时间快速模式60mS,低功耗模式220ms 封装:SOT23-6 VKD233DB --- 工作电压/电流:2.4V-5.5V/2.5uA-3V 1感应按键 封装:SOT23-6 通讯界面:直接输出,锁存(toggle)输出 低功耗模式电流2.5uA-3V VKD233DH ---工作电压/电流:2.4V-5.5V/2.5uA-3V 1感应按键 封装:SOT23-6 通讯界面:直接输出,锁存(toggle)输出 有效键最长时间检测16S VKD233DS --- 工作电压/电流:2.4V-5.5V/2.5uA-3V 1感应按键 封装:DFN6(2*2超小封装) 通讯界面:直接输出,锁存(toggle)输出 低功耗模式电流2.5uA-3V VKD233DR --- 工作电压/电流:2.4V-5.5V/1.5uA-3V 1感应按键 封装:DFN6(2*2超小封装) 通讯界面:直接输出,锁存(toggle)输出 低功耗模式电流1.5uA-3V VKD233DG --- 工作电压/电流:2.4V-5.5V/2.5uA-3V 1感应按键 封装:DFN6(2*2超小封装) 通讯界面:直接输出,锁存(toggle)输出 低功耗模式电流2.5uA-3V VKD233DQ --- 工作电压/电流:2.4V-5.5V/5uA-3V 1感应按键 封装:SOT23-6 通讯界面:直接输出,锁存(toggle)输出 低功耗模式电流5uA-3V VKD233DM --- 工作电压/电流:2.4V-5.5V/5uA-3V 1感应按键 封装:SOT23-6 (开漏输出) 通讯界面:开漏输出,锁存(toggle)输出 低功耗模式电流5uA-3V VKD232C --- 工作电压/电流:2.4V-5.5V/2.5uA-3V 感应通道数:2 封装:SOT23-6 通讯界面:直接输出,低电平有效 固定为多键输出模式,内建稳压电路 MTP触摸IC——VK36N系列抗电源辐射及手机干扰: VK3601L --- 工作电压/电流:2.4V-5.5V/4UA-3V3 感应通道数:1 1对1直接输出 待机电流小,抗电源及手机干扰,可通过CAP调节灵敏 封装:SOT23-6 VK36N1D --- 工作电压/电流:2.2V-5.5V/7UA-3V3 感应通道数:1 1对1直接输出 触摸积水仍可操作,抗电源及手机干扰,可通过CAP调节灵敏封装:SOT23-6 VK36N2P --- 工作电压/电流:2.2V-5.5V/7UA-3V3 感应通道数:2 脉冲输出 触摸积水仍可操作,抗电源及手机干扰,可通过CAP调节灵敏封装:SOT23-6 VK3602XS ---工作电压/电流:2.4V-5.5V/60UA-3V 感应通道数:2 2对2锁存输出 低功耗模式电流8uA-3V,抗电源辐射干扰,宽供电电压 封装:SOP8 VK3602K --- 工作电压/电流:2.4V-5.5V/60UA-3V 感应通道数:2 2对2直接输出 低功耗模式电流8uA-3V,抗电源辐射干扰,宽供电电压 封装:SOP8 VK36N2D --- 工作电压/电流:2.2V-5.5V/7UA-3V3 感应通道数:2 1对1直接输出 触摸积水仍可操作,抗电源及手机干扰,可通过CAP调节灵敏封装:SOP8 VK36N3BT ---工作电压/电流:2.2V-5.5V/7UA-3V3 感应通道数:3 BCD码锁存输出 触摸积水仍可操作,抗电源及手机干扰,可通过CAP调节灵敏 封装:SOP8 VK36N3BD ---工作电压/电流:2.2V-5.5V/7UA-3V3 感应通道数:3 BCD码直接输出 触摸积水仍可操作,抗电源及手机干扰,可通过CAP调节灵敏 封装:SOP8 VK36N3BO ---工作电压/电流:2.2V-5.5V/7UA-3V3 感应通道数:3 BCD码开漏输出 触摸积水仍可操作,抗电源及手机干扰 封装:SOP8/DFN8(超小超薄体积) VK36N3D --- 工作电压/电流:2.2V-5.5V/7UA-3V3 感应通道数:3 1对1直接输出 触摸积水仍可操作,抗电源及手机干扰 封装:SOP16/DFN16(超小超薄体积) VK36N4B ---工作电压/电流:2.2V-5.5V/7UA-3V3 感应通道数:4 BCD输出 触摸积水仍可操作,抗电源及手机干扰 封装:SOP16/DFN16(超小超薄体积) VK36N4I---工作电压/电流:2.2V-5.5V/7UA-3V3 感应通道数:4 I2C输出 触摸积水仍可操作,抗电源及手机干扰 封装:SOP16/DFN16(超小超薄体积) VK36N5D ---工作电压/电流:2.2V-5.5V/7UA-3V3 感应通道数:5 1对1直接输出 触摸积水仍可操作,抗电源及手机干扰 封装:SOP16/DFN16(超小超薄体积) VK36N5B ---工作电压/电流:2.2V-5.5V/7UA-3V3 感应通道数:5 BCD输出 触摸积水仍可操作,抗电源及手机干扰 封装:SOP16/DFN16(超小超薄体积) VK36N5I ---工作电压/电流:2.2V-5.5V/7UA-3V3 感应通道数:5 I2C输出 触摸积水仍可操作,抗电源及手机干扰 封装:SOP16/DFN16(超小超薄体积) VK36N6D --- 工作电压/电流:2.2V-5.5V/7UA-3V3 感应通道数:6 1对1直接输出 触摸积水仍可操作,抗电源及手机干扰 封装:SOP16/DFN16(超小超薄体积) VK36N6B ---工作电压/电流:2.2V-5.5V/7UA-3V3 感应通道数:6 BCD输出 触摸积水仍可操作,抗电源及手机干扰 封装:SOP16/DFN16(超小超薄体积) VK36N6I ---工作电压/电流:2.2V-5.5V/7UA-3V3 感应通道数:6 I2C输出 触摸积水仍可操作,抗电源及手机干扰 封装:SOP16/DFN16(超小超薄体积) VK36N7B ---工作电压/电流:2.2V-5.5V/7UA-3V3 感应通道数:7 BCD输出 触摸积水仍可操作,抗电源及手机干扰 封装:SOP16/DFN16(超小超薄体积) VK36N7I ---工作电压/电流:2.2V-5.5V/7UA-3V3 感应通道数:7 I2C输出 触摸积水仍可操作,抗电源及手机干扰 封装:SOP16/DFN16(超小超薄体积) VK36N8B ---工作电压/电流:2.2V-5.5V/7UA-3V3 感应通道数:8 BCD输出 触摸积水仍可操作,抗电源及手机干扰 封装:SOP16/DFN16(超小超薄体积) VK36N8I ---工作电压/电流:2.2V-5.5V/7UA-3V3 感应通道数:8 I2C输出 触摸积水仍可操作,抗电源及手机干扰 封装:SOP16/DFN16(超小超薄体积) VK36N9I ---工作电压/电流:2.2V-5.5V/7UA-3V3 感应通道数:9 I2C输出 触摸积水仍可操作,抗电源及手机干扰 封装:SOP16/DFN16(超小超薄体积) VK36N10I ---工作电压/电流:2.2V-5.5V/7UA-3V3 感应通道数:10 I2C输出 触摸积水仍可操作,抗电源及手机干扰 封装:SOP16/DFN16(超小超薄体积) 1-8点高灵敏度液体水位检测IC——VK36W系列 VK36W1D ---工作电压/电流:2.2V-5.5V/10UA-3V3 1对1直接输出 水位检测通道:1 可用于不同壁厚和不同水质水位检测,抗电源/手机干扰封装:SOT23-6 备注:1. 开漏输出低电平有效 2、适合需要抗干扰性好的应用 VK36W2D ---工作电压/电流:2.2V-5.5V/10UA-3V3 1对1直接输出 水位检测通道:2 可用于不同壁厚和不同水质水位检测,抗电源/手机干扰封装:SOP8 备注:1. 1对1直接输出 2、输出模式/输出电平可通过IO选择 VK36W4D ---工作电压/电流:2.2V-5.5V/10UA-3V3 1对1直接输出 水位检测通道:4 可用于不同壁厚和不同水质水位检测,抗电源/手机干扰封装:SOP16/DFN16 备注:1. 1对1直接输出 2、输出模式/输出电平可通过IO选择 VK36W6D ---工作电压/电流:2.2V-5.5V/10UA-3V3 1对1直接输出 水位检测通道:6 可用于不同壁厚和不同水质水位检测,抗电源/手机干扰封装:SOP16/DFN16 备注:1. 1对1直接输出 2、输出模式/输出电平可通过IO选择 VK36W8I ---工作电压/电流:2.2V-5.5V/10UA-3V3 I2C输出 水位检测通道:8 可用于不同壁厚和不同水质水位检测,抗电源/手机干扰封装:SOP16/DFN16 备注:1. IIC+INT输出 2、输出模式/输出电平可通过IO选择 KPP878
标签: 3603 VK 脚位 电源供电 电子秤 触摸检测 芯片
上传时间: 2022-04-14
上传用户:shubashushi66
TM52 系列 F8368 是一个新的,快速的 8051 架构,与业界标准 8051 指令集完全兼容的 8 位单片机,并保持了 8051 外围的功能模块。通常情况下,TM52 执行指令,比传统的 8051 架构快六倍。TM52-F8368通过集成多种功能在芯片上,提供更高的性能,更低的成本,能快速进入市场,包括8K 字节的闪存(Flash)程序存储器, 512 字节 SRAM,低电压复位(LVR),低电压检测(LVD),双时钟省电工作模式,8051 标准 UART 和定时器 Timer0/Timer1/Timer2,实时计时器 Timer3,LCD/LED 驱动器,3 组16 位脉冲宽度调制器(PWM), 7 组 16 位脉冲宽度调制器(PWM),16 通道的 12 位模数转换器(ADC),I2C 接口和看门狗定时器(WDT)。它的高可靠性和低功耗的特性,可广泛适用于消费电子及家用电器产品。
标签: 51单片机
上传时间: 2022-04-18
上传用户:jason_vip1
作者为美国多年经验的信号处理工程实践经验,从应用角度出发,抛开复杂繁琐的公式,1)阐述从概率统计角度认识信号和噪声。2)模数和数模转换理论。3)包括卷积、相关、离散傅里叶变换、FFT等重要计算和实现方法4)以及数字滤波器和音频、视频的信号处理等。 建议可以结合经典的奥本海姆的《信号与系统》和《离散信号处理》为基础,补充这类侧重工程实践角度讲解和实现的数字补充学习。
标签: 数字信号处理
上传时间: 2022-04-21
上传用户:fliang
满足自动控制、电子测量等领域数据采集的需求,设计了一种基于 ADS1256 模数转换器和 STM32 单片机的数据采集卡。该数据采集装置有 8 个 24 位通道,可以配置为单端 8 通道模式和双端 4 组模式,直接测量电压范围为0~5 V,具备串口通信接口和 CAN 总线接口。测试结果表明,该数据采集卡的电压测量相对误差小于 0.5%。
上传时间: 2022-05-02
上传用户:jiabin
本设计以 STM32 单片机和 AD7791 实现电子秤的设计。设计采用电阻式应变片组成应变电桥的称重传感器采集重量的电压信号,采用两个零漂移放大器 ADA4528 组成了前端差分放大电路,设计采用了差分滤波器和共模滤波器,有效抑制了进入模数转换模块 AD7791 中的噪声,STM32 通过 SPI 接口控制 AD7791 进行数据 A/D 转换,读取和数据处理,在 LCD 显示屏显示测量结果。经过实际测试,称重传感器测量范围在 1g ~ 6KG 之间,测量范围在 10g 内时测量误差能达到 0.2g 之内。
上传时间: 2022-05-07
上传用户:
本设计采用模块化设计法,以51单片机为核心设计一款高精度电子秤,当被称物体放置在秤台上时,称重传感器产生力-电效应,将物体的重量转换成与被称物体重量成一定函数关系的电信号。该电信号先通过前端信号处理电路,然后经过A/D转换电路转换成数字信号送入到主控电路的单片机中,单片机通过扫描键盘和各种功能开关,根据键盘输入内容和各种功能开关的状态进行判断、分析和控制,来完成各种运算和显示功能。利用压力传感器采集因压力变化产生的电压信号,经过电压放大电路放大,然后再经过模数转换器转换为数字信号,最后把数字信号送入单片机。单片机经过相应的处理后,得出当前所称物品的重量及总额,然后再显示出来。
上传时间: 2022-05-15
上传用户:
本设计是基于AT89C51单片机和ADC0832的自动浇花系统。本设计的电路内部包含湿度采集和AD转换等主要功能。自动浇水系统设计的浇水部分是通过单片机程序设计浇水的上下限值与感应电路送入单片机的土壤湿度值相比较,当低于下限值时,单片机输出一个信号控制浇水,高于上限值时再由单片机输出一个信号控制停止浇水。这样可以帮助人们及时地给心爱的盆花浇水。目 录1 自动浇花器的研究现状 22 系统设计的研究方法和手段 23 系统硬件简介 23.1 单片机的最小化系统 23.1.1 AT89C51单片机的基本组成 33.1.2 AT89C51单片机的存储器 33.1.3 振荡电路和时钟 43.2 LCD1602简介 53.2.1 LCD1602的基本参数及引脚功能 53.3 ADC0832的简介 73.3.1 ADC静态特性 83.3.2 ADC动态特性 83.3.3 ADC性能测试 93.3.4 常用ADC芯片概述 93.3.5 ADC0832模数转换原理及主要技术指标 93.3.6 主要特性 103.3.7 内部结构 103.3.8 外部特性(引脚功能) 103.3.9 ADC0832的工作过程 113.3.10 ADC0832与单片机的接口电路 113.4 土壤湿度检测模块 123.4.1 比较器LM393 133.4.1.1 LM393主要特点: 133.4.1.2 LM393引脚图及内部框图 133.5 报警及电机驱动 154软件设计 154.1 主程序流程图 154.2显示模块 184.3 AD转换模块 194.4湿度检测模块 205. 结论 21谢 辞 24附录1 原理图 24附录2 参考程序 25
上传时间: 2022-05-17
上传用户:canderile
是一个集成的热电偶测量系统,基于AD7124-4/AD7124-8低功耗、低噪声、24位-型模数转换器(ADC),针对高精度测量应用而优化。使用该系统的热电偶测量在−50°C至+200°C的测量温度范围内具有±1°C的整体系统精度。系统的典型无噪声码分辨率约为15位。AD7124-4可配置为4个差分或7个伪差分输入通道,而AD7124-8可配置为8个差分或15个伪差分输入通道。片内低噪声可编程增益阵列(PGA)确保ADC中可直接输入小信号。
标签: adc
上传时间: 2022-05-25
上传用户: