在MATLAB程序仿真部分,主要分为6大部分,分别为主函数,发送模块,接收模块,AWNG信道,Walsh函数和差错计数器。通过主函数对各个子函数的调用,实现4个用户的随机数据的发送和接收,同时生成前4个用户在整个传输过程中的各种波形变化图,并对系统信噪比与误码率关系进行分析。
标签: MATLAB 直接序列扩频 仿真 毕业论文 通信系统
上传时间: 2018-04-14
上传用户:LoveShes
正交频分复用(OFDM)技术以其频谱利用率高、抗多径和脉冲噪声、在高效带宽利用率情况下的高速传输能力、根据信道条件对子载波进行灵活调制及功率分配的能力,并成为第四代移动通信的关键技术之一。本课程论文主要涉及了OFDM系统中的FFT/IFFT、时钟同步、循环前缀、频偏估计、峰平比等关键技术。压缩包中有完整代码且有word文档
上传时间: 2018-12-20
上传用户:allures
题目:基于51单片机的RS485从机系统设计 单片机接口资源配置: 1. 上电复位电路; 2. 晶振电路采用11.0592Mhz晶振; 3. 485接口电路(P3.7用于485芯片的收发控制,收发管脚接单片机的rxd和txd); 4. P2口通过外部跳线接相应的高低电平,配置从机地址为组号; 5. P3.6外接一发光二极管(注意串联电阻进行限流); 6. P3.2外接一按键,断开高电平,按下低电平; 7. 按键检测采用外部中断方式,下跳沿触发; 8. 单片机定时器0以模式1(16位模式)工作,产生50ms的定时中断,并在此基础上设计一单片机内部时钟(24小时制,能计数时、分、秒、50ms值); 9. 单片机串行通信采用模式1非多机通信方式,采用9600波特率以串行中断方式进行数据的收发通信,主机地址为0xF0,广播地址为0xFF。 系统功能需求: 1. 系统配置和自检功能: l 从机上电后进行初始化,通过读取P2口进行从机地址配置; l 发光二极管以每秒一次的频率闪烁(亮0.5秒,灭0.5秒); l 检测到一次按键按下操作后,熄灭发光二极管。 2. 数据接收和按键计时功能: l 从机接收主机程序(PC机上的串口调试程序)的按键允许命令帧并进行校验; l 校验正确并且目的地址是广播地址或者本从机的地址,通过发光二极管长亮指示,并允许按键操作; l 按键按下后,尽可能准确记录按键的动作时点(定时器的低8位、定时器的高8位、50ms值、秒、分、小时); l 按键操作只能响应一次,重复按键操作不响应; l 按键的动作时点记录后,发光二极管以每秒一次的频率闪烁(亮0.5秒,灭0.5秒)。 3. 数据发送功能: l 从机接收主机程序发来的时钟数据搜索命令帧并进行校验; l 如果校验正确并且数据帧的目的地址是本从机的地址,从机将前面记录的按键动作时点数据(定时器的低8位、定时器的高8位、50ms值、秒、分、小时)按附录中的时钟数据返回帧的帧格式回传给主机; l 时钟数据返回帧回传结束后,熄灭发光二极管。 4. 校验和生成和检测功能: l 发送数据帧时能自动生成数据帧校验和; l 每帧数据在发送帧尾前,发送一字节的当前帧数据的校验和; l 接收数据帧时能检测校验和并判断接收数据是否正确。 附录:帧定义 校验和的计算:除去帧头和帧尾后将帧中的其他数据求和并取低8位; 帧长:不计帧头、帧尾和校验和字节。 按键允许命令帧: 帧头 帧长 目的地址 源地址 命令字 校验和 帧尾 AA 04 FF F0 01 F4 66 时钟数据搜索命令帧: 帧头 帧长 目的地址 源地址 命令字 保留字 校验和 帧尾 AA 05 01 F0 03 00 F9 66 时钟数据返回帧: 帧头 帧长 目的地址 源地址 命令字 TL0 TH0 50ms 秒 分 时 校验和 帧尾 AA 0A F0 01 07 01 B6 09 03 00 00 C5 66 帧结构头文件frame.h(内容如下) //帧格式定义 #define FRAME_HEAD 0xAA //帧头 #define FRAME_FOOT 0x66 //帧尾 #define FRAME_LEN 0x00 //帧长 #define FRAME_DST_ADR 0x01 //目的地址 #define FRAME_SRC_ADR 0x02 //源地址 #define FRAME_CMD 0x03 //命令字 #define FRAME_DATA 0x04 //帧数据起始 //帧命令定义 #define READY 0x01 //按键允许命令 #define TIME_SERCH 0x03 //时钟数据轮询命令 #define TIME_BACK 0x07 //时钟数据返回命令 //地址定义 #define BROAD_ADR 0xFF //广播地址 #define MASTER_ADR 0xF0 //主机地址
上传时间: 2020-06-18
上传用户:umuo
基本误差 在相关国标、规程规定的参比条件下,输出电流为50mA~120A装置的最大允许误差(含标准表)小于0.01%,输出电流为1mA~50mA装置的最大允许误差(含标准表)小于0.015%。 可实现三只三相电能表的三相四线及三相三线的误差测量;可测试无功电能基本误差。 1.2.3.2 测量重复性 装置的测量重复性用实验标准差表征,在进行不少于10次的重复测量,其测量结果的标准偏差估计值s不超过0.001%。 1.2.3.3 输出电量 1.2.3.3.1 电压电流量程 输出电压范围:3×(57.7V~380V); 每档电压输出瞬间及相位切换时不允许有尖峰。每档电压输出上限达120%Un。 输出电流范围:3×(0.001A~100A); 输出电流范围上限要求达到120A。每档电流输出瞬间及相位切换时不允许有尖峰。每档电流输出上限达120%In。 1.2.3.3.2 输出负载容量 三表位:电压输出:每相≥150VA 电流输出: 每相≥300VA 1.2.3.3.3 输出电量调节 (1) 电压、电流调节: 调节范围:0%~120% 调节细度:优于0.005%。 (2) 相位调节: 调节范围:0°~360° 调节细度:优于0.01°。 (3) 频率调节: 调节范围:45Hz~65Hz 调节细度:优于0.001Hz。 1.2.3.3.4 输出功率稳定度:<0.005% / 3min . 稳定度按JJG597的5.2.3.13方法计算。 1.2.3.3.5 输出电压电流失真度 装置输出电压电流失真度范围:小于0.1%。 1.2.3.3.6起动电流:装置具有起动电流调整、测量功能,能输出0.5mA的起动电流。 起动电流的测量误差≤ 5%,起动功率的测量误差 ≤ 10%。 1.2.3.3.7三相电量对称性 任一相(或线)电压和相(或线)电压平均值之差不大于±0.1%;各相电流与其平均值之差不大于±0.2%;任一相电压与对应相电流间的相位角之差不大于0.5°;任一相电压(电流)与另一相电压(电流)间相位角与120°之差不大于0.5°。 1.2.3.4 多路隔离输出的装置各路输出负载影响应符合JJG597—2005中 3.8条的规定。 1.2.3.5 确定同名端钮间电位差应符合JJG597—2005中3.9条的规定。 1.2.3.6 多路输出的一致性应符合JJG597—2005中3.7条的规定。 1.2.3.7 监视示值的误差 监视仪表应有足够的测量范围,电压示值误差限为±0.2%,电流、功率示值误差限为±0.2%,相位示值误差限为±0.3°,频率示值误差限为±0.1%,启动电流和启动功率的监视示值误差不超过5%(启动电流为1mA时的监视示值误差也不应超过5%)。各监视示值的分辨力应不超过其对应误差限的1/5。 1.2.3.8 具有消除自激的功能。可自动消除开机或关机时产生的尖脉冲。 1.2.3.9 装置的磁场 由装置产生的在被检表位置的磁感应强度不大于下列数值: I≤10A时,B≤0.0025mT; I=200A时,B≤0.05mT;10A到200A之间的磁感应强度极限值可按内插法求得。 1.2.3.10 电磁兼容性 (1)电磁骚扰的抗扰度 装置的设计能保证在传导和辐射的电磁骚扰以及静电放电的影响下不损坏或不受实质性影响(如元器件损毁、控制系统死机、精度出现变化等影响正常检定工作的现象),骚扰量为静电放电、射频电磁场。 (2)无线电干扰抑制 装置不发生能干扰其他设备的传导和辐射噪声。 1.2.3.11 稳定性变差 (1)短期稳定性变差 装置基本误差合格的同时,在15min内的基本误差最大变化值(连续测量7h),不大于装置对应最大允许误差的20%。 (2)检定周期内变差 检定周期内装置基本误差合格的同时,其最大变化值,不大于0.01%。 1.2.3.12 安全 装置的绝缘强度试验要求和与安全有关的结构要求符合GB 4793.1的规定。 1.2.3.13 脉冲输出 同时检测三路被检脉冲:显示当前误差平均误差和标准偏差;同时检测的被检脉冲的常数、工作方式和脉冲个数,可完全不同;误差测量所需要的输入参数的位数,应能覆盖目前各种标准表和的检测需要。对每一表位应有高频、低频脉冲信号的BNC接收端口,能接收≤600kHz的有/无源脉冲(5-30V脉冲幅值)。 1.2.3.14供电电源 供电电源在3×220V/380V10,50Hz2Hz装置正常工作。
上传时间: 2021-06-15
上传用户:li091122
毕业论文-基于Arduino的温度测试系统设计摘要在物质文化水平逐渐提高的社会背景下,智能家居逐渐兴起,现如今已经具有一定的规模。基于arduino的数据采集端以及基于Android的数据接收终端是本文的研究对象,全文设计了智能家居的一个子系统——温度测试系统。该基于arduino的温度测试系统主要涉及了以下几个领域:Android 平台的软件开发、Arduino 平台的软硬件构成、蓝牙通信的简单应用、温度数据采集实际操作。该系统主要由Arduino UNO主控板、Arduino Xbee V5 传感器扩展板、DS18B20 数字温度传感器、Bluetooth V3蓝牙通信模块、Android终端机构成。以蓝牙作为媒介,通过Arduino组件和 Android组件的连接,完成了从传感器收集数据传输到终端机的过程。本课题设计温度测试系统,操作简单,界面简洁,测试结果观测很直接,整个系统运行稳定流畅。本温度测试系统也可用于其他很多行业,应用范围很广泛,非常值得进一步开发与升级。关键词 智能家居;Arduino;Android;温度测试
上传时间: 2021-10-16
上传用户:jason_vip1
基于JAVA CS远程监控系统软件的实现(源代码+WORD论文文档论文)基于JAVA C/S远程监控系统软件的实现摘 要近年来,网络技术的不断发展,为远程监控技术的发展创造了条件。远程监控系统软件越来越受到人们的重视,其实用性也毋庸质疑。基于JAVA C/S远程监控系统软件突破了空间的限制,使用者不用亲临,在自己的电脑面前就能轻松的实现对被监控端机器的监控。本系统采用Java网络编程和Java图形编程实现。笔者在开发过程中将网络技术与远程监控理论基础相结合,实现了以下功能:能连续获得被监控端机器屏幕变化;实现被监控端硬盘文件的上传、下载;实现对鼠标、键盘的模拟;实现在远程机器上执行任意DOS命令;远程关机、远程重启计算机,方便了用户监视和操作被监控端机器。本系统从系统需求分析、概要设计、详细设计到具体的编码实现和后期的代码优化、功能测试都严格遵循了软件工程的思想。 关键词:远程监控;Java Robot;屏幕截取;Java Socket
上传时间: 2021-10-25
上传用户:
基于JAVA的飞机订票系统软件源码+论文文档资料说明:《网上机票预订系统》本是在Internet环境下运行的,但根据课程需求在此我们先将它做为一个c/s程序。该项软件开发的意图是为了方便航空公司进行乘客预定票的管理,减少管理中出现的麻烦,它主要在某一航空公司内部进行使用,再加之这是一项独立的软件,全部内容自含,所以不会涉及到与其它系统、产品的联系和接口问题。 2.2 用户特点管理员(维护人员):熟练掌握Java语言。熟悉掌握 sql语句的使用。 普通用户:能够熟练地使用桌面程序,有一定的电脑基础。 2.3 假定和约束普通管理员,只能对库(航班库和客户库)中的信息进行查询操作;超级管理员,可以根据具体需要进行适当的数据管理(增、删、改、更)。客户只能对航班信息库中的内容进行查询操作,客户进入到页面之后在不进行登录的情况下只能进行航班信息查询操作,要预订机票就必须要先注册登录提交自己的基本信息;系统会根据管理员和客户的各种操作做出相应的返回信息进行提示。第三章 需求规定3.1系统功能需求本系统用于远程机票预订,包括远程航班信息查询、机票预订与确认等;主要分为四大功能:查询、订票、退票和管理。 管理员登录、注销 到系统并进行插入、删除、更新以及查看机票后台数据库操作插入:机票的插入可以按照航班号、班期、公司、座位号、起飞地以及抵达地等等插入数据库。 删除:机票可以按照航班号、起止城市、星期进行删除3.1.1客户端系统功能 1.普通用户: 查询:根据航班号、航空公司以及目的地查询出票类信息订票: 根据出发日期和第一航班号预订机票,机票类型分为单程和往返,一份订单可订多张机票 。 退票:要填写订单号、身份证、客户姓名以及航班信息等等。后台管理系统: 航班动态:可以根据出发城市、到达城市(或者是航班号)查看这个航班的最新动态 2.机场人员: 查询:根据航班号、航空公司以及目的地查询出票类信息订票: 根据出发日期和第一航班号预订机票,机票类型分为单程和往返,一份订单可订多张机票 。 退票:要填写订单号、身份证、客户姓名以及航班信息等等。后台管理系统: 销售统计:根据年份、月份统计总共买出的票数 后台管理:管理员可以根据总部要求去创建航班、取消航班、航班查询 下面以结构图来描述机票预定系统的软件总体结构 3.1.2 服务器端系统功能 查询:当有旅客查询机票时,接收其数据信息,并能返回查询结果 统计:对售出的机票作
上传时间: 2021-11-12
上传用户:
基于红外技术的智能机器人控制系统基于红外技术、单片机技术等完成 了智能机器人控制 系统的设计。该机器人实现 了步行、跟踪、避 障 、 步伐调 整 、语 音 、声控 、液 晶 显示 、地 面探 测 等功 能 。 红外技 术 智 能机 器人 控制 系统 随着政 治格 局 、 战争形 式 的 变化 ,在 侦察 、战 场攻击 、反恐 防爆 等军 事领 域 {冉}要 大量 无人 作战 机 器人 ;人 类探 索太 空 、建设 航 天站 、抢 险救 灾等 不 适合 由人 来承担 的任务 的增 加 ,也 {冉}要 机器 人代 替 人类执 行 任务 。 同时, 新 的需 求和任 务 也对 机器 人 的 性能 提 出 了更 高 的要 求 。 由于 红 外线 有较 强 的 穿透 能 力和 抗 干 扰 能 力, 不易散 射 且不 易 引起 串干扰 。本 设计 基 于红 外技 术 完 成 智 能机 器 人 控 制 系 统 的 设 计 , 主 要 实现 了 步 行 、跟踪 、避 障 、步伐 调整 、语 音 、声 控 、液 晶显 示 、地 面探 测 8个 功能 ,在 遇到 外界 条件 发生 变化 时, 该机 器人 将采 取不 同 的措 施对 待, 能较 好地 表 现 出该 机器 人 的 简单 思 考 能 力 。 1智能机器人说明 1.1功能简介机系统框图 机 器人 控 制系 统框 图如 图 1。 耦,P3,0~P3.5接 ISD语音芯片, P3,O~P3.5接 ISD语 音 芯 片 。 该机器人 采用 2片 AT89C51来控制,一 片用于 整个 系统的控制, 一片仅 用于驱动 液晶屏 1602的控 制 ,它 们之 间通过 I/O 121通 讯, 以实现 两片单 片机 工 作 的协
上传时间: 2022-02-13
上传用户:zhanglei193
随着科学技术的发展和现代战争的需要,数据融合作为一门新兴交叉学科,在近年来得到了广泛关注和快速发展,而关于雷达情报处理的研究和应用也日益受到重视。现代战争中,指挥、控制通信和情报系统面临着严峻的挑战。在多雷达情报处理系统中,采用数据融合技术,提供更加实时、准确的情报是现代战争的迫切需求。论文正是围绕这一需求展开的,研究了雷达情报数据融合系统的误差校正和航迹关联问论文较为系统地介绍了数据融合的概念、研究意义、国内外发展状况及其应用,并讨论了数据融合的模型、结构及关键技术论文针对多雷达情报处理系统中的系统误差问题,研究了四种误差校正方法。文研究了密集目标环境中的航迹关联问题,对多传感器数据关联的方法进行了分类,并针对多雷达情报处理系统这个分布式系统,研究了分布式数据关联方法。运用0-1整数规划法建立了密集目标环境的规划模型函数并求解应用在多雷达数据融合软件中,使航迹关联达到了极好的效果,为开发多雷达数据融合软件提供了技术支持。关键词:雷达情报,数据融合,数据关联,误差校正,航迹关联,0-1整数规划现代战争中,新型作战飞机机动性能强,具有隐身特性,加上电子对抗的战场环境,传统雷达情报处理系统已应付不了多目标,高密度的空情要求。为了适应新军事变革要求,在未来信息化战争中雷达能够给出准确的信息情报,雷达情报处理系统在改善硬件条件的同时,开发运用数据融合新技术,从根本上改善雷达情报质量已然成为当务之急数据融合一词最早出现在七十年代末期,是从军事CI系统中提出的,它与信号处理、计算机技术、概率统计、图像处理和人工智能学科密切相关,是一门新兴发展起来的交叉学科。
上传时间: 2022-03-18
上传用户:wangshoupeng199
以STC12C5A60S2单片机为控制核心,采用2.4G(JF24D)无线遥控模块进行无线发射与接收,设计了一种双电机遥控船模控制系统.该系统通过切换档杆实现前进后退,方向盘左右转动、暂停按钮等控制直流电机的正转、反转、暂停,使得电机驱动的遥控船模实现前进后退、左右转向、暂停等功能,有效解决了驱动功率小和船模之间相互干扰等问题,可广泛应用于遥控船模领域.Using STC12C5A60S2 single-chip microcomputer as the controller and 2.4 G(JF24D)wireless remote control module for wireless transmission and reception, a dual-motor remote control ship model control system is designed. The system realizes forward and backward by switching the gear lever. The steering wheel rotates left and right and the pause button controls the forward, reverse and pause of the dc motor. The remote controller of ship model driven by the motor realizes forward and backward, left and right steering, pause and other functions. The ship model control system can effectively solve the problems of small driving power and mutual interference between ship models, and can be widely used in the field of remote controller of ship model.
上传时间: 2022-03-27
上传用户: