一种视频增强技术,主要应用于高清数字电视的视频处理器
标签: 视频
上传时间: 2014-01-07
上传用户:维子哥哥
PIC16C63单片机UART通信——A机读取时钟芯片DS1302获得当前时间,通过UART通信传给B机,B机使用LCD1602显示当前时间
上传时间: 2013-11-30
上传用户:shanml
A design about 8051 (running at 12MHz) based system with 3 7-Seg displays and two buttons to implement the following functions. 1. When press the + button, the display C = A+B. 2. When press the button, the display C = A - B. “A” and “B” are 8-bit inputs when “C” is 9-bit output.
上传时间: 2015-05-05
上传用户:guoxiy
以Android为基础发展TVOS 以Android 4 0 3 为基础 针对TV需求 进行定制开发和裁减 项目目标 –以Android 4.0.3 为基础,针对TV需求,进行定制开发和裁减 ? 符合中智盟标准 –统一的API接口(包括TV API,Mediaplayer API 等),共享第三方开发者 –一 统 的多媒体框架 –统一的交互设备消息系统 –统一的应用协议栈 ? 可定制化开发特色业务 –双屏电视功能 –增强型多屏互动业务(移屏,远程设备模拟等功能) –定制开发数字电视一体机 –定制边看边聊
上传时间: 2017-02-21
上传用户:tianzw78
/****************temic*********t5557***********************************/ #include <at892051.h> #include <string.h> #include <intrins.h> #include <stdio.h> #define uchar unsigned char #define uint unsigned int #define ulong unsigned long //STC12C2051AD的SFR定义 sfr WDT_CONTR = 0xe1;//stc2051的看门狗?????? /**********全局常量************/ //写卡的命令 #define write_command0 0//写密码 #define write_command1 1//写配置字 #define write_command2 2//密码写数据 #define write_command3 3//唤醒 #define write_command4 4//停止命令 #define TRUE 1 #define FALSE 0 #define OK 0 #define ERROR 255 //读卡的时间参数us #define ts_min 250//270*11.0592/12=249//取近似的整数 #define ts_max 304//330*11.0592/12=304 #define t1_min 73//90*11.0592/12=83:-10调整 #define t1_max 156//180*11.0592/12=166 #define t2_min 184//210*11.0592/12=194 #define t2_max 267//300*11.0592/12=276 //***********不采用中断处理:采用查询的方法读卡时关所有中断****************/ sbit p_U2270B_Standby = P3^5;//p_U2270B_Standby PIN=13 sbit p_U2270B_CFE = P3^3;//p_U2270B_CFE PIN=6 sbit p_U2270B_OutPut = P3^7;//p_U2270B_OutPut PIN=2 sbit wtd_sck = P1^7;//SPI总线 sbit wtd_si = P1^3; sbit wtd_so = P1^2; sbit iic_data = P1^2;//lcd IIC sbit iic_clk = P1^7; sbit led_light = P1^6;//测试绿灯 sbit led_light1 = P1^5;//测试红灯 sbit led_light_ok = P1^1;//读卡成功标志 sbit fengmingqi = P1^5; /***********全局变量************************************/ uchar data Nkey_a[4] = {0xA0, 0xA1, 0xA2, 0xA3};//初始密码 //uchar idata card_snr[4]; //配置字 uchar data bankdata[28] = {1,2,3,4,5,6,7,1,2,3,4,5,6,7,1,2,3,4,5,6,7,1,2,3,4,5,6,7}; //存储卡上用户数据(1-7)7*4=28 uchar data cominceptbuff[6] = {1,2,3,4,5,6};//串口接收数组ram uchar command; //第一个命令 uchar command1;// //uint temp; uchar j,i; uchar myaddr = 8; //uchar ywqz_count,time_count; //ywqz jishu: uchar bdata DATA; sbit BIT0 = DATA^0; sbit BIT1 = DATA^1; sbit BIT2 = DATA^2; sbit BIT3 = DATA^3; sbit BIT4 = DATA^4; sbit BIT5 = DATA^5; sbit BIT6 = DATA^6; sbit BIT7 = DATA^7; uchar bdata DATA1; sbit BIT10 = DATA1^0; sbit BIT11 = DATA1^1; sbit BIT12 = DATA1^2; sbit BIT13 = DATA1^3; sbit BIT14 = DATA1^4; sbit BIT15 = DATA1^5; sbit BIT16 = DATA1^6; sbit BIT17 = DATA1^7; bit i_CurrentLevel;//i_CurrentLevel BIT 00H(Saves current level of OutPut pin of U2270B) bit timer1_end; bit read_ok = 0; //缓存定时值,因用同一个定时器 union HLint { uint W; struct { uchar H;uchar L; } B; };//union HLint idata a union HLint data a; //缓存定时值,因用同一个定时器 union HLint0 { uint W; struct { uchar H; uchar L; } B; };//union HLint idata a union HLint0 data b; /**********************函数原型*****************/ //读写操作 void f_readcard(void);//全部读出1~7 AOR唤醒 void f_writecard(uchar x);//根据命令写不同的内容和操作 void f_clearpassword(void);//清除密码 void f_changepassword(void);//修改密码 //功能子函数 void write_password(uchar data *data p);//写初始密码或数据 void write_block(uchar x,uchar data *data p);//不能用通用指针 void write_bit(bit x);//写位 /*子函数区*****************************************************/ void delay_2(uint x) //延时,时间x*10us@12mhz,最小20us@12mhz { x--; x--; while(x) { _nop_(); _nop_(); x--; } _nop_();//WDT_CONTR=0X3C;不能频繁的复位 _nop_(); } ///////////////////////////////////////////////////////////////////// void initial(void) { SCON = 0x50; //串口方式1,允许接收 //SCON =0x50; //01010000B:10位异步收发,波特率可变,SM2=0不用接收到有效停止位才RI=1, //REN=1允许接收 TMOD = 0x21; //定时器1 定时方式2(8位),定时器0 定时方式1(16位) TCON = 0x40; //设定时器1 允许开始计时(IT1=1) TH1 = 0xfD; //FB 18.432MHz 9600 波特率 TL1 = 0xfD; //fd 11.0592 9600 IE = 0X90; //EA=ES=1 TR1 = 1; //启动定时器 WDT_CONTR = 0x3c;//使能看门狗 p_U2270B_Standby = 0;//单电源 PCON = 0x00; IP = 0x10;//uart you xian XXXPS PT1 PX1 PT0 PX0 led_light1 = 1; led_light = 0; p_U2270B_OutPut = 1; } /************************************************/ void f_readcard()//读卡 { EA = 0;//全关,防止影响跳变的定时器计时 WDT_CONTR = 0X3C;//喂狗 p_U2270B_CFE = 1;// delay_2(232); //>2.5ms /* // aor 用唤醒功能来防碰撞 p_U2270B_CFE = 0; delay_2(18);//start gap>150us write_bit(1);//10=操作码读0页 write_bit(0); write_password(&bankdata[24]);//密码block7 p_U2270B_CFE =1 ;// delay_2(516);//编程及确认时间5.6ms */ WDT_CONTR = 0X3C;//喂狗 led_light = 0; b.W = 0; while(!(read_ok == 1)) { //while(p_U2270B_OutPut);//等一个稳定的低电平?超时判断? while(!p_U2270B_OutPut);//等待上升沿的到来同步信号检测1 TR0 = 1; //deng xia jiang while(p_U2270B_OutPut);//等待下降沿 TR0 = 0; a.B.H = TH0; a.B.L = TL0; TH0 = TL0 = 0; TR0 = 1;//定时器晚启动10个周期 //同步头 if((324 < a.W) && (a.W < 353)) ;//检测同步信号1 else { TR0 = 0; TH0 = TL0 = 0; goto read_error; } //等待上升沿 while(!p_U2270B_OutPut); TR0 = 0; a.B.H = TH0; a.B.L = TL0; TH0 = TL0 = 0; TR0 = 1;//b.N1<<=8; if(a.B.L < 195);//0.5p else { TR0 = 0; TH0 = TL0 = 0; goto read_error; } //读0~7块的数据 for(j = 0;j < 28;j++) { //uchar i; for(i = 0;i < 16;i++)//8个位 { //等待下降沿的到来 while(p_U2270B_OutPut); TR0 = 0; a.B.H = TH0; a.B.L = TL0; TH0 = TL0 = 0; TR0 = 1; if(t2_max < a.W/*)&&(a.W < t2_max)*/)//1P { b.W >>= 2;//先左移再赋值 b.B.L += 0xc0; i++; } else if(t1_min < a.B.L/*)&&(a.B.L < t1_max)*/)//0.5p { b.W >>= 1; b.B.L += 0x80; } else { TR0 = 0; TH0 = TL0 = 0; goto read_error; } i++; while(!p_U2270B_OutPut);//上升 TR0 = 0; a.B.H = TH0; a.B.L = TL0; TH0 = TL0 = 0; TR0 = 1; if(t2_min < a.W/*)&&(a.W < t2_max)*/)//1P { b.W >>= 2; i++; } else if(t1_min < a.B.L/*a.W)&&(a.B.L < t1_max)*/)//0.5P //else if(!(a.W==0)) { b.W >>= 1; //temp+=0x00; //led_light1=0;led_light=1;delay_2(40000); } else { TR0 = 0; TH0 = TL0 = 0; goto read_error; } i++; } //取出奇位 DATA = b.B.L; BIT13 = BIT7; BIT12 = BIT5; BIT11 = BIT3; BIT10 = BIT1; DATA = b.B.H; BIT17 = BIT7; BIT16 = BIT5; BIT15 = BIT3; BIT14 = BIT1; bankdata[j] = DATA1; } read_ok = 1;//读卡完成了 read_error: _nop_(); } } /***************************************************/ void f_writecard(uchar x)//写卡 { p_U2270B_CFE = 1; delay_2(232); //>2.5ms //psw=0 standard write if (x == write_command0)//写密码:初始化密码 { uchar i; uchar data *data p; p = cominceptbuff; p_U2270B_CFE = 0; delay_2(31);//start gap>330us write_bit(1);//写操作码1:10 write_bit(0);//写操作码0 write_bit(0);//写锁定位0 for(i = 0;i < 35;i++) { write_bit(1);//写数据位1 } p_U2270B_CFE = 1; led_light1 = 0; led_light = 1; delay_2(40000);//测试使用 //write_block(cominceptbuff[4],p); p_U2270B_CFE = 1; bankdata[20] = cominceptbuff[0];//密码存入 bankdata[21] = cominceptbuff[1]; bankdata[22] = cominceptbuff[2]; bankdata[23] = cominceptbuff[3]; } else if (x == write_command1)//配置卡参数:初始化 { uchar data *data p; p = cominceptbuff; write_bit(1);//写操作码1:10 write_bit(0);//写操作码0 write_bit(0);//写锁定位0 write_block(cominceptbuff[4],p); p_U2270B_CFE= 1; } //psw=1 pssword mode else if(x == write_command2) //密码写数据 { uchar data*data p; p = &bankdata[24]; write_bit(1);//写操作码1:10 write_bit(0);//写操作码0 write_password(p);//发口令 write_bit(0);//写锁定位0 p = cominceptbuff; write_block(cominceptbuff[4],p);//写数据 } else if(x == write_command3)//aor //唤醒 { //cominceptbuff[1]操作码10 X xxxxxB uchar data *data p; p = cominceptbuff; write_bit(1);//10 write_bit(0); write_password(p);//密码 p_U2270B_CFE = 1;//此时数据不停的循环传出 } else //停止操作码 { write_bit(1);//11 write_bit(1); p_U2270B_CFE = 1; } p_U2270B_CFE = 1; delay_2(560);//5.6ms } /************************************/ void f_clearpassword()//清除密码 { uchar data *data p; uchar i,x; p = &bankdata[24];//原密码 p_U2270B_CFE = 0; delay_2(18);//start gap>150us //操作码10:10xxxxxxB write_bit(1); write_bit(0); for(x = 0;x < 4;x++)//发原密码 { DATA = *(p++); for(i = 0;i < 8;i++) { write_bit(BIT0); DATA >>= 1; } } write_bit(0);//锁定位0:0 p = &cominceptbuff[0]; write_block(0x00,p);//写新配置参数:pwd=0 //密码无效:即清除密码 DATA = 0x00;//停止操作码00000000B for(i = 0;i < 2;i++) { write_bit(BIT7); DATA <<= 1; } p_U2270B_CFE = 1; delay_2(560);//5.6ms } /*********************************/ void f_changepassword()//修改密码 { uchar data *data p; uchar i,x,addr; addr = 0x07;//block7 p = &Nkey_a[0];//原密码 DATA = 0x80;//操作码10:10xxxxxxB for(i = 0;i < 2;i++) { write_bit(BIT7); DATA <<= 1; } for(x = 0;x < 4;x++)//发原密码 { DATA = *(p++); for(i = 0;i < 8;i++) { write_bit(BIT7); DATA >>= 1; } } write_bit(0);//锁定位0:0 p = &cominceptbuff[0]; write_block(0x07,p);//写新密码 p_U2270B_CFE = 1; bankdata[24] = cominceptbuff[0];//密码存入 bankdata[25] = cominceptbuff[1]; bankdata[26] = cominceptbuff[2]; bankdata[27] = cominceptbuff[3]; DATA = 0x00;//停止操作码00000000B for(i = 0;i < 2;i++) { write_bit(BIT7); DATA <<= 1; } p_U2270B_CFE = 1; delay_2(560);//5.6ms } /***************************子函数***********************************/ void write_bit(bit x)//写一位 { if(x) { p_U2270B_CFE = 1; delay_2(32);//448*11.0592/120=42延时448us p_U2270B_CFE = 0; delay_2(28);//280*11.0592/120=26写1 } else { p_U2270B_CFE = 1; delay_2(92);//192*11.0592/120=18 p_U2270B_CFE = 0; delay_2(28);//280*11.0592/120=26写0 } } /*******************写一个block*******************/ void write_block(uchar addr,uchar data *data p) { uchar i,j; for(i = 0;i < 4;i++)//block0数据 { DATA = *(p++); for(j = 0;j < 8;j++) { write_bit(BIT0); DATA >>= 1; } } DATA = addr <<= 5;//0地址 for(i = 0;i < 3;i++) { write_bit(BIT7); DATA <<= 1; } } /*************************************************/ void write_password(uchar data *data p) { uchar i,j; for(i = 0;i < 4;i++)// { DATA = *(p++); for(j = 0;j < 8;j++) { write_bit(BIT0); DATA >>= 1; } } } /*************************************************/ void main() { initial(); TI = RI = 0; ES = 1; EA = 1; delay_2(28); //f_readcard(); while(1) { f_readcard(); //读卡 f_writecard(command1); //写卡 f_clearpassword(); //清除密码 f_changepassword(); //修改密码 } }
标签: 12345
上传时间: 2017-10-20
上传用户:my_lcs
目前cPU+ Memory等系统集成的多芯片系统级封装已经成为3DSiP(3 Dimension System in Package,三维系统级封装)的主流,非常具有代表性和市场前景,SiP作为将不同种类的元件,通过不同技术,混载于同一封装内的一种系统集成封装形式,不仅可搭载不同类型的芯片,还可以实现系统的功能。然而,其封装具有更高密度和更大的发热密度和热阻,对封装技术具有更大的挑战。因此,对SiP封装的工艺流程和SiP封装中的湿热分布及它们对可靠性影响的研究有着十分重要的意义本课题是在数字电视(DTV)接收端子系统模块设计的基础上对CPU和DDR芯片进行芯片堆叠的SiP封装。封装形式选择了适用于小型化的BGA封装,结构上采用CPU和DDR两芯片堆叠的3D结构,以引线键合的方式为互连,实现小型化系统级封装。本文研究该SP封装中芯片粘贴工艺及其可靠性,利用不导电胶将CPU和DDR芯片进行了堆叠贴片,分析总结了SiP封装堆叠贴片工艺最为关键的是涂布材料不导电胶的体积和施加在芯片上作用力大小,对制成的样品进行了高温高湿试验,分析湿气对SiP封装的可靠性的影响。论文利用有限元软件 Abaqus对SiP封装进行了建模,模型包括热应力和湿气扩散模型。模拟分析了封装体在温度循环条件下,受到的应力、应变、以及可能出现的失效形式:比较了相同的热载荷条件下,改变塑封料、粘结层的材料属性,如杨氏模量、热膨胀系数以及芯片、粘结层的厚度等对封装体应力应变的影响。并对封装进行了湿气吸附分析,研究了SiP封装在85℃RH85%环境下吸湿5h、17h、55和168h后的相对湿度分布情况,还对SiP封装在湿热环境下可能产生的可靠性问题进行了实验研究。在经过168小时湿气预处理后,封装外部的基板和模塑料基本上达到饱和。模拟结果表明湿应力同样对封装的可靠性会产生重要影响。实验结果也证实了,SiP封装在湿气环境下引入的湿应力对可靠性有着重要影响。论文还利用有限元分析方法对超薄多芯片SiP封装进行了建模,对其在温度循环条件下的应力、应变以及可能的失效形式进行了分析。采用二水平正交试验设计的方法研究四层芯片、四层粘结薄膜、塑封料等9个封装组件的厚度变化对芯片上最大应力的影响,从而找到最主要的影响因子进行优化设计,最终得到更优化的四层芯片叠层SiP封装结构。
标签: sip封装
上传时间: 2022-04-08
上传用户:
|- 数据科学速查表 - 0 B|- 迁移学习实战 - 0 B|- 零起点Python机器学习快速入门 - 0 B|- 《深度学习入门:基于Python的理论与实现》高清中文版PDF+源代码 - 0 B|- 《Python生物信息学数据管理》中文版PDF+英文版PDF+源代码 - 0 B|- 《Python深度学习》2018中文版pdf+英文版pdf+源代码 - 0 B|- 《Python编程:从入门到实践》中文版+源代码 - 0 B|- stanford machine learning - 0 B|- Python语言程序设计2018版电子教案 - 0 B|- Python网络编程第三版 (原版+中文版+源代码) - 0 B|- Python机器学习实践指南(中文版带书签)、原书代码、数据集 - 0 B|- python官方文档 - 0 B|- Python编程(第4版 套装上下册) - 0 B|- PyQt5快速开发与实战(pdf+源码) - 0 B|- linux - 0 B|- 征服PYTHON-语言基础与典型应用.pdf - 67.40 MB|- 与孩子一起学编程_中文版_详细书签.pdf - 69.10 MB|- 用Python做科学计算.pdf - 6.10 MB|- 用Python写网络爬虫.pdf - 9.90 MB|- 用Python进行自然语言处理(中文翻译NLTK).pdf - 4.40 MB|- 像计算机科学家那样思考 Python中文版第二版.pdf - 712.00 kB|- 网络爬虫-Python和数据分析.pdf - 6.90 MB|- 图解机器学习.pdf - 59.40 MB|- 凸优化.pdf - 5.70 MB|- 数据挖掘导论.pdf - 2.50 MB|- 数据科学入门.pdf - 13.30 MB|- 数据结构与算法__Python语言描述_裘宗燕编著_北京:机械工业出版社_,_2016.01_P346.pdf - 74.30 MB|- 神经网络与深度学习.pdf - 92.60 MB|- 深入Python3...
标签: python
上传时间: 2022-06-06
上传用户:
【摘要】:基于传统的方法在很多特殊场合:如带腐蚀的液体,强电磁干扰,有毒等恶劣条件下,测量距离存在不可克服的缺陷,超声波测距能很好的解决此类的问题。本论文主要对单片机超声波测距系统的原理,单片机的应用等进行了分析:对超声波的发生电路和接收电路,DS18B320温度采集电路,LCD显示电路,硬件制作和软件设计;对系统进行误差分析。【关键词】:超声波测距,单片机,DS18B20温度补偿,LCD显示,软件设计,误差分析。嵌入式系统无疑是当前最热门、最具有发展前景的IT应用之一。嵌入式系统的应用可以使传统的电子系统升级成为智能化的电子产品,使其成为具有“生命”的现代化智能系统。嵌入式系统一般应用于对实时响应要求较高的设备中,单片机作为嵌入式系统的核心部件,其应用使电子系统的智能化出现了意想不到的效果,常常无需对硬件资源做任何改动,只需更新系统软件就能使系统功能升级。现代社会中嵌入式系统无处不在,早已被应用在国防、国民经济、以及人们日常生活的各个领域,主要可以归纳为以下几个方面。(1)军事装备:各种武器控制(火炮控制、弹道控制、炮弹引信等),坦克、舰船、轰炸等各种电子装备,雷达、电子对抗、军事通讯装备等。(2)家用电器:各种家电产品,如数字电视、机顶盒、数码相机、VCD,DVD.可视电话、洗衣机、电冰箱、手机、智能玩具等。(3)工业控制:各种智能仪器仪表、数控装置、可编程控制器、分布式控制系统、工业机器人、机电一体化设备、汽车电子设备等。(4)商用设备:各种收款机、POS系统、电子秤、条形码阅读器、商务终端、IC卡输入设备、自动柜员机、防盗系统等。(5)办公用品:复印机、打印机、传真机、扫描仪、手机、个人数字助理(PDA).变频空调设备、通信终端、程控变换机、网络设备等。6)医疗电子设备:各种医疗电子仪器,如 光机、超声诊断仪、心脏起搏器、监护仪器等,以及辅助诊断系统、专家系统等。单片机应用系统的设计包括单片机基本扩展、外围电路设计和程序设计、单片机应用系统开发环境、系统可靠性设计、电磁兼容性设计等内容。通常开发一个单片机系统的步骤如下:
上传时间: 2022-06-18
上传用户:
超声理论与技术的快速发展,使超声设备不断更新,超声检查已成为预测和评价疾病及其治疗结果不可缺少的重要方法。超声诊断技术不仅具有安全、方便、无损、廉价等优点,其优越性还在于它选用诊断参数的多样性及其在工程上实现的灵活性。 全数字B超诊断仪基于嵌入式ARM9+FPGA硬件平台、LINUX嵌入式操作系统,是一种新型的、操作方便的、技术含量高的机型。它具有现有黑白B超的基本功能,能够对超声回波数据进行灵活的处理,从而使操作更加方便,图象质量进一步提高,并为远程医疗、图像存储、拷贝等打下基础,是一种很有发展前景、未来市场的主打产品。全数字B型超声诊断仪的基本技术特点是用数字硬件电路来实现数据量极其庞大的超声信息的实时处理,它的实现主要倚重于FPGA技术。现在FPGA已经成为多种数字信号处理(DSP)应用的强有力解决方案。硬件和软件设计者可以利用可编程逻辑开发各种DSP应用解决方案。可编程解决方案可以更好地适应快速变化的标准、协议和性能需求。 本论文首先阐述了医疗仪器发展现状和嵌入式计算机体系结构及发展状况,提出了课题研究内容和目标。然后从B超诊断原理及全数字B超诊断仪设计入手深入分析了B型超声诊断仪的系统的硬件体系机构。对系统的总体框架和ARM模块设计做了描述后,接着分析了超声信号进行数字化处理的各个子模块、可编程逻辑器件的结构特点、编程原理、设计流程以及ARM处理模块和FPGA模块的主要通讯接口。接着,本论文介绍了基于ARM9硬件平台的LINUX嵌入式操作系统的移植和设备驱动的开发,详细描述了B型超声诊断仪的软件环境的架构及其设备驱动的详细设计。最后对整个系统的功能和特点进行了总结和展望。
上传时间: 2013-05-28
上传用户:sssnaxie
输入一个四位数,共八次机会,A代表数字和位置均正确,B代表数字正确,但位置不正确.比如:A2B1代表三个数字正确,两个位置也正确
上传时间: 2013-12-11
上传用户:ukuk