该产品采用高度集成化工艺将力敏元件(PVDF压电膜)、灵敏度温度补偿元件、感温元件、信号调理电路电路集成在传感器内。压电式原理采集信号,模拟信号输出,输出同步于脉搏波动的脉冲信号,脉搏波动一次输出一正脉冲。该产品可用于脉率检测,如运动、健身器材设备中的心率测试。从传感器检测到的脉搏信号转化为电压信号送入电压跟随器,起到缓冲的作用,使前级和后级隔离开来,避免相互干扰。输出的信号经前置放大后送入高通滤波器,以滤除传感器的热电干扰,再经过低通滤波器滤除环境中的高频干扰。处理完的信号送入后级继续放大以便得到干扰小且清晰的信号,此信号经比较器和二极管整流后直接送入单片机处理,以驱动显示电路和报警电路。本系统电路的软件部分能够精确跟踪微小心电信号的频率。所采用的技术是单片机的断捕获功能以及数学算法误差消除、硬件结构误差消除。
上传时间: 2022-07-29
上传用户:
1) A道和B道上均有车辆要求通过时,A、B道轮流放行。A道放行5分钟(调试时改为5秒钟),B道放行4分钟(调试时改为4秒钟)。 2) 一道有车而另一道无车(实验时用开关K0和K1控制),交通灯控制系统能立即让有车道放行。 3) 有紧急车辆要求通过时,系统要能禁止普通车辆通行,A、B道均为红灯,紧急车由K2开关模拟。 4) 绿灯转换为红灯时黄灯亮1秒钟。
标签:
上传时间: 2013-12-19
上传用户:daguda
MSP430系列flash型超低功耗16位单片机MSP430系列单片机在超低功耗和功能集成等方面有明显的特点。该系列单片机自问世以来,颇受用户关注。在2000年该系列单片机又出现了几个FLASH型的成员,它们除了仍然具备适合应用在自动信号采集系统、电池供电便携式装置、超长时间连续工作的设备等领域的特点外,更具有开发方便、可以现场编程等优点。这些技术特点正是应用工程师特别感兴趣的。《MSP430系列FLASH型超低功耗16位单片机》对该系列单片机的FLASH型成员的原理、结构、内部各功能模块及开发方法与工具作详细介绍。MSP430系列FLASH型超低功耗16位单片机 目录 第1章 引 论1.1 MSP430系列单片机1.2 MSP430F11x系列1.3 MSP430F11x1系列1.4 MSP430F13x系列1.5 MSP430F14x系列第2章 结构概述2.1 引 言2.2 CPU2.3 程序存储器2.4 数据存储器2.5 运行控制2.6 外围模块2.7 振荡器与时钟发生器第3章 系统复位、中断及工作模式3.1 系统复位和初始化3.1.1 引 言3.1.2 系统复位后的设备初始化3.2 中断系统结构3.3 MSP430 中断优先级3.3.1 中断操作--复位/NMI3.3.2 中断操作--振荡器失效控制3.4 中断处理 3.4.1 SFR中的中断控制位3.4.2 中断向量地址3.4.3 外部中断3.5 工作模式3.5.1 低功耗模式0、1(LPM0和LPM1)3.5.2 低功耗模式2、3(LPM2和LPM3)3.5.3 低功耗模式4(LPM4)22 3.6 低功耗应用的要点23第4章 存储空间4.1 引 言4.2 存储器中的数据4.3 片内ROM组织4.3.1 ROM 表的处理4.3.2 计算分支跳转和子程序调用4.4 RAM 和外围模块组织4.4.1 RAM4.4.2 外围模块--地址定位4.4.3 外围模块--SFR4.5 FLASH存储器4.5.1 FLASH存储器的组织4.5.2 FALSH存储器的数据结构4.5.3 FLASH存储器的控制寄存器4.5.4 FLASH存储器的安全键值与中断4.5.5 经JTAG接口访问FLASH存储器39第5章 16位CPU5.1 CPU寄存器5.1.1 程序计数器PC5.1.2 系统堆栈指针SP5.1.3 状态寄存器SR5.1.4 常数发生寄存器CG1和CG25.2 寻址模式5.2.1 寄存器模式5.2.2 变址模式5.2.3 符号模式5.2.4 绝对模式5.2.5 间接模式5.2.6 间接增量模式5.2.7 立即模式5.2.8 指令的时钟周期与长度5.3 指令组概述5.3.1 双操作数指令5.3.2 单操作数指令5.3.3 条件跳转5.3.4 模拟指令的简短格式5.3.5 其他指令第6章 硬件乘法器6.1 硬件乘法器6.2 硬件乘法器操作6.2.1 无符号数相乘(16位×16位、16位×8位、8位×16位、8位×8位)6.2.2 有符号数相乘(16位×16位、16位×8位、8位×16位、8位×8位)6.2.3 无符号数乘加(16位×16位、16位×8位、8位×16位、8位×8位)6.2.4 有符号数乘加(16位×16位、16位×8位、8位×16位、8位×8位)6.3 硬件乘法器寄存器6.4 硬件乘法器的软件限制6.4.1 寻址模式6.4.2 中断程序6.4.3 MACS第7章 基础时钟模块7.1 基础时钟模块7.2 LFXT1与XT27.2.1 LFXT1振荡器7.2.2 XT2振荡器7.2.3 振荡器失效检测7.2.4 XT振荡器失效时的DCO7.3 DCO振荡器7.3.1 DCO振荡器的特性7.3.2 DCO调整器7.4 时钟与运行模式7.4.1 由PUC启动7.4.2 基础时钟调整7.4.3 用于低功耗的基础时钟特性7.4.4 选择晶振产生MCLK7.4.5 时钟信号的同步7.5 基础时钟模块控制寄存器7.5.1 DCO时钟频率控制7.5.2 振荡器与时钟控制寄存器7.5.3 SFR控制位第8章 输入输出端口8.1 引 言8.2 端口P1、P28.2.1 P1、P2的控制寄存器8.2.2 P1、P2的原理8.2.3 P1、P2的中断控制功能8.3 端口P3、P4、P5和P68.3.1 端口P3、P4、P5和P6的控制寄存器8.3.2 端口P3、P4、P5和P6的端口逻辑第9章 看门狗定时器WDT9.1 看门狗定时器9.2 WDT寄存器9.3 WDT中断控制功能9.4 WDT操作第10章 16位定时器Timer_A10.1 引 言10.2 Timer_A的操作10.2.1 定时器模式控制10.2.2 时钟源选择和分频10.2.3 定时器启动10.3 定时器模式10.3.1 停止模式10.3.2 增计数模式10.3.3 连续模式10.3.4 增/减计数模式10.4 捕获/比较模块10.4.1 捕获模式10.4.2 比较模式10.5 输出单元10.5.1 输出模式10.5.2 输出控制模块10.5.3 输出举例10.6 Timer_A的寄存器10.6.1 Timer_A控制寄存器TACTL10.6.2 Timer_A寄存器TAR10.6.3 捕获/比较控制寄存器CCTLx10.6.4 Timer_A中断向量寄存器10.7 Timer_A的UART应用 第11章 16位定时器Timer_B11.1 引 言11.2 Timer_B的操作11.2.1 定时器长度11.2.2 定时器模式控制11.2.3 时钟源选择和分频11.2.4 定时器启动11.3 定时器模式11.3.1 停止模式11.3.2 增计数模式11.3.3 连续模式11.3.4 增/减计数模式11.4 捕获/比较模块11.4.1 捕获模式11.4.2 比较模式11.5 输出单元11.5.1 输出模式11.5.2 输出控制模块11.5.3 输出举例11.6 Timer_B的寄存器11.6.1 Timer_B控制寄存器TBCTL11.6.2 Timer_B寄存器TBR11.6.3 捕获/比较控制寄存器CCTLx11.6.4 Timer_B中断向量寄存器第12章 USART通信模块的UART功能12.1 异步模式12.1.1 异步帧格式12.1.2 异步通信的波特率发生器12.1.3 异步通信格式12.1.4 线路空闲多机模式12.1.5 地址位多机通信格式12.2 中断和中断允许12.2.1 USART接收允许12.2.2 USART发送允许12.2.3 USART接收中断操作12.2.4 USART发送中断操作12.3 控制和状态寄存器12.3.1 USART控制寄存器UCTL12.3.2 发送控制寄存器UTCTL12.3.3 接收控制寄存器URCTL12.3.4 波特率选择和调整控制寄存器12.3.5 USART接收数据缓存URXBUF12.3.6 USART发送数据缓存UTXBUF12.4 UART模式,低功耗模式应用特性12.4.1 由UART帧启动接收操作12.4.2 时钟频率的充分利用与UART的波特率12.4.3 多处理机模式对节约MSP430资源的支持12.5 波特率计算 第13章 USART通信模块的SPI功能13.1 USART同步操作13.1.1 SPI模式中的主模式13.1.2 SPI模式中的从模式13.2 中断与控制功能 13.2.1 USART接收/发送允许位及接收操作13.2.2 USART接收/发送允许位及发送操作13.2.3 USART接收中断操作13.2.4 USART发送中断操作13.3 控制与状态寄存器13.3.1 USART控制寄存器13.3.2 发送控制寄存器UTCTL13.3.3 接收控制寄存器URCTL13.3.4 波特率选择和调制控制寄存器13.3.5 USART接收数据缓存URXBUF13.3.6 USART发送数据缓存UTXBUF第14章 比较器Comparator_A14.1 概 述14.2 比较器A原理14.2.1 输入模拟开关14.2.2 输入多路切换14.2.3 比较器14.2.4 输出滤波器14.2.5 参考电平发生器14.2.6 比较器A中断电路14.3 比较器A控制寄存器14.3.1 控制寄存器CACTL114.3.2 控制寄存器CACTL214.3.3 端口禁止寄存器CAPD14.4 比较器A应用14.4.1 模拟信号在数字端口的输入14.4.2 比较器A测量电阻元件14.4.3 两个独立电阻元件的测量系统14.4.4 比较器A检测电流或电压14.4.5 比较器A测量电流或电压14.4.6 测量比较器A的偏压14.4.7 比较器A的偏压补偿14.4.8 增加比较器A的回差第15章 模数转换器ADC1215.1 概 述15.2 ADC12的工作原理及操作15.2.1 ADC内核15.2.2 参考电平15.3 模拟输入与多路切换15.3.1 模拟多路切换15.3.2 输入信号15.3.3 热敏二极管的使用15.4 转换存储15.5 转换模式15.5.1 单通道单次转换模式15.5.2 序列通道单次转换模式15.5.3 单通道重复转换模式15.5.4 序列通道重复转换模式15.5.5 转换模式之间的切换15.5.6 低功耗15.6 转换时钟与转换速度15.7 采 样15.7.1 采样操作15.7.2 采样信号输入选择15.7.3 采样模式15.7.4 MSC位的使用15.7.5 采样时序15.8 ADC12控制寄存器15.8.1 控制寄存器ADC12CTL0和ADC12CTL115.8.2 转换存储寄存器ADC12MEMx15.8.3 控制寄存器ADC12MCTLx15.8.4 中断标志寄存器ADC12IFG.x和中断允许寄存器ADC12IEN.x15.8.5 中断向量寄存器ADC12IV15.9 ADC12接地与降噪第16章 FLASH型芯片的开发16.1 开发系统概述16.1.1 开发技术16.1.2 MSP430系列的开发16.1.3 MSP430F系列的开发16.2 FLASH型的FET开发方法16.2.1 MSP430芯片的JTAG接口16.2.2 FLASH型仿真工具16.3 FLASH型的BOOT ROM16.3.1 标准复位过程和进入BSL过程16.3.2 BSL的UART协议16.3.3 数据格式16.3.4 退出BSL16.3.5 保护口令16.3.6 BSL的内部设置和资源附录A 寻址空间附录B 指令说明B.1 指令汇总B.2 指令格式B.3 不增加ROM开销的模拟指令B.4 指令说明(字母顺序)B.5 用几条指令模拟的宏指令附录C MSP430系列单片机参数表附录D MSP430系列单片机封装形式附录E MSP430系列器件命名
上传时间: 2014-04-28
上传用户:sssnaxie
38V/100A可直接并联大功率AC/DC变换器 随着电力电子技术的发展,电源技术被广泛应用于计算机、工业仪器仪表、军事、航天等领域,涉及到国民经济各行各业。特别是近年来,随着IGBT的广泛应用,开关电源向更大功率方向发展。研制各种各样的大功率,高性能的开关电源成为趋势。某电源系统要求输入电压为AC220V,输出电压为DC38V,输出电流为100A,输出电压低纹波,功率因数>0.9,必要时多台电源可以直接并联使用,并联时的负载不均衡度<5%。 设计采用了AC/DC/AC/DC变换方案。一次整流后的直流电压,经过有源功率因数校正环节以提高系统的功率因数,再经半桥变换电路逆变后,由高频变压器隔离降压,最后整流输出直流电压。系统的主要环节有DC/DC电路、功率因数校正电路、PWM控制电路、均流电路和保护电路等。 1 有源功率因数校正环节 由于系统的功率因数要求0.9以上,采用二极管整流是不能满足要求的,所以,加入了有源功率因数校正环节。采用UC3854A/B控制芯片来组成功率因数电路。UC3854A/B是Unitrode公司一种新的高功率因数校正器集成控制电路芯片,是在UC3854基础上的改进。其特点是:采用平均电流控制,功率因数接近1,高带宽,限制电网电流失真≤3%[1]。图1是由UC3854A/B控制的有源功率因数校正电路。 该电路由两部分组成。UC3854A/B及外围元器件构成控制部分,实现对网侧输入电流和输出电压的控制。功率部分由L2,C5,V等元器件构成Boost升压电路。开关管V选择西门康公司的SKM75GB123D模块,其工作频率选在35kHz。升压电感L2为2mH/20A。C5采用四个450V/470μF的电解电容并联。因为,设计的PFC电路主要是用在大功率DC/DC电路中,所以,在负载轻的时候不进行功率因数校正,当负载较大时功率因数校正电路自动投入使用。此部分控制由图1中的比较器部分来实现。R10及R11是负载检测电阻。当负载较轻时,R10及R11上检测的信号输入给比较器,使其输出端为低电平,D2导通,给ENA(使能端)低电平使UC3854A/B封锁。在负载较大时ENA为高电平才让UC3854A/B工作。D3接到SS(软启动端),在负载轻时D3导通,使SS为低电平;当负载增大要求UC3854A/B工作时,SS端电位从零缓慢升高,控制输出脉冲占空比慢慢增大实现软启动。 2 DC/DC主电路及控制部分分析 2.1 DC/DC主电路拓扑 在大功率高频开关电源中,常用的主变换电路有推挽电路、半桥电路、全桥电路等[2]。其中推挽电路的开关器件少,输出功率大,但开关管承受电压高(为电源电压的2倍),且变压器有六个抽头,结构复杂;全桥电路开关管承受的电压不高,输出功率大,但是需要的开关器件多(4个),驱动电路复杂。半桥电路开关管承受的电压低,开关器件少,驱动简单。根据对各种拓扑方案的工程化实现难度,电气性能以及成本等指标的综合比较,本电源选用半桥式DC/DC变换器作为主电路。图2为大功率开关电源的主电路拓扑图。
上传时间: 2013-11-13
上传用户:ukuk
本书全面、系统地介绍了MCS-51系列单片机应用系统的各种实用接口技术及其配置。 内容包括:MCS-51系列单片机组成原理:应用系统扩展、开发与调试;键盘输入接口的设计及调试;打印机和显示器接口及设计实例;模拟输入通道接口技术;A/D、D/A、接口技术及在控制系统中的应用设计;V/F转换器接口技术、串行通讯接口技术以及其它与应用系统设计有关的实用技术等。 本书是为满足广大科技工作者从事单片机应用系统软件、硬件设计的需要而编写的,具有内容新颖、实用、全面的特色。所有的接口设计都包括详细的设计步骤、硬件线路图及故障分析,并附有测试程序清单。书中大部分接口软、硬件设计实例都是作者多年来从事单片机应用和开发工作的经验总结,实用性和工程性较强,尤其是对应用系统中必备的键盘、显示器、打印机、A/D、D/A通讯接口设计、模拟信号处理及开发系统应用举例甚多,目的是让将要开始和正在从事单片机应用开发的科研人员根据自己的实际需要来选择应用,一书在手即可基本完成单片机应用系统的开发工作。 本书主要面向从事单片机应用开发工作的广大工程技术人员,也可作为大专院校有关专业的教材或教学参考书。 第一章MCS-51系列单片机组成原理 1.1概述 1.1.1单片机主流产品系列 1.1.2单片机芯片技术的发展概况 1.1.3单片机的应用领域 1.2MCS-51单片机硬件结构 1.2.1MCS-51单片机硬件结构的特点 1.2.2MCS-51单片机的引脚描述及片外总线结构 1.2.3MCS-51片内总体结构 1.2.4MCS-51单片机中央处理器及其振荡器、时钟电路和CPU时序 1.2.5MCS-51单片机的复位状态及几种复位电路设计 1.2.6存储器、特殊功能寄存器及位地址空间 1.2.7输入/输出(I/O)口 1.3MCS-51单片机指令系统分析 1.3.1指令系统的寻址方式 1.3.2指令系统的使用要点 1.3.3指令系统分类总结 1.4串行接口与定时/计数器 1.4.1串行接口简介 1.4.2定时器/计数器的结构 1.4.3定时器/计数器的四种工作模式 1.4.4定时器/计数器对输入信号的要求 1.4.5定时器/计数器的编程和应用 1.5中断系统 1.5.1中断请求源 1.5.2中断控制 1.5.3中断的响应过程 1.5.4外部中断的响应时间 1.5.5外部中断方式的选择 第二章MCS-51单片机系统扩展 2.1概述 2.2程序存贮器的扩展 2.2.1外部程序存贮器的扩展原理及时序 2.2.2地址锁存器 2.2.3EPROM扩展电路 2.2.4EEPROM扩展电路 2.3外部数据存贮器的扩展 2.3.1外部数据存贮器的扩展方法及时序 2.3.2静态RAM扩展 2.3.3动态RAM扩展 2.4外部I/O口的扩展 2.4.1I/O口扩展概述 2.4.2I/O口地址译码技术 2.4.38255A可编程并行I/O扩展接口 2.4.48155/8156可编程并行I/O扩展接口 2.4.58243并行I/O扩展接口 2.4.6用TTL芯片扩展I/O接口 2.4.7用串行口扩展I/O接口 2.4.8中断系统扩展 第三章MCS-51单片机应用系统的开发 3.1单片机应用系统的设计 3.1.1设计前的准备工作 3.1.2应用系统的硬件设计 3.1.3应用系统的软件设计 3.1.4应用系统的抗干扰设计 3.2单片机应用系统的开发 3.2.1仿真系统的功能 3.2.2开发手段的选择 3.2.3应用系统的开发过程 3.3SICE—IV型单片机仿真器 3.3.1SICE-IV仿真器系统结构 3.3.2SICE-IV的仿真特性和软件功能 3.3.3SICE-IV与主机和终端的连接使用方法 3.4KHK-ICE-51单片机仿真开发系统 3.4.1KHK—ICE-51仿真器系统结构 3.4.2仿真器系统功能特点 3.4.3KHK-ICE-51仿真系统的安装及其使用 3.5单片机应用系统的调试 3.5.1应用系统联机前的静态调试 3.5.2外部数据存储器RAM的测试 3.5.3程序存储器的调试 3.5.4输出功能模块调试 3.5.5可编程I/O接口芯片的调试 3.5.6外部中断和定时器中断的调试 3.6用户程序的编辑、汇编、调试、固化及运行 3.6.1源程序的编辑 3.6.2源程序的汇编 3.6.3用户程序的调试 3.6.4用户程序的固化 3.6.5用户程序的运行 第四章键盘及其接口技术 4.1键盘输入应解决的问题 4.1.1键盘输入的特点 4.1.2按键的确认 4.1.3消除按键抖动的措施 4.2独立式按键接口设计 4.3矩阵式键盘接口设计 4.3.1矩阵键盘工作原理 4.3.2按键的识别方法 4.3.3键盘的编码 4.3.4键盘工作方式 4.3.5矩阵键盘接口实例及编程要点 4.3.6双功能及多功能键设计 4.3.7键盘处理中的特殊问题一重键和连击 4.48279键盘、显示器接口芯片及应用 4.4.18279的组成和基本工作原理 4.4.28279管脚、引线及功能说明 4.4.38279编程 4.4.48279键盘接口实例 4.5功能开关及拨码盘接口设计 第五章显示器接口设计 5.1LED显示器 5.1.1LED段显示器结构与原理 5.1.2LED显示器及显示方式 5.1.3LED显示器接口实例 5.1.4LED显示器驱动技术 5.2单片机应用系统中典型键盘、显示接口技术 5.2.1用8255和串行口扩展的键盘、显示器电路 5.2.2由锁存器组成的键盘、显示器接口电路 5.2.3由8155构成的键盘、显示器接口电路 5.2.4用8279组成的显示器实例 5.3液晶显示LCD 5.3.1LCD的基本结构及工作原理 5.3.2LCD的驱动方式 5.3.34位LCD静态驱动芯片ICM7211系列简介 5.3.4点阵式液晶显示控制器HD61830介绍 5.3.5点阵式液晶显示模块介绍 5.4荧光管显示 5.5LED大屏幕显示器 第六章打印机接口设计 6.1打印机简介 6.1.1打印机的基本知识 6.1.2打印机的电路构成 6.1.3打印机的接口信号 6.1.4打印机的打印命令 6.2TPμP-40A微打与单片机接口设计 6.2.1TPμP系列微型打印机简介 6.2.2TPμP-40A打印功能及接口信号 6.2.3TPμP-40A工作方式及打印命令 6.2.48031与TPμP-40A的接口 6.2.5打印编程实例 6.3XLF微型打印机与单片机接口设计 6.3.1XLF微打简介 6.3.2XLF微打接口信号及与8031接口设计 6.3.3XLF微打控制命令 6.3.4打印机编程 6.4标准宽行打印机与8031接口设计 6.4.1TH3070接口引脚信号及时序 6.4.2与8031的简单接口 6.4.3通过打印机适配器完成8031与打印机的接口 6.4.4对打印机的编程 第七章模拟输入通道接口技术 7.1传感器 7.1.1传感器的分类 7.1.2温度传感器 7.1.3光电传感器 7.1.4湿度传感器 7.1.5其他传感器 7.2模拟信号放大技术 7.2.1基本放大器电路 7.2.2集成运算放大器 7.2.3常用运算放大器及应用举例 7.2.4测量放大器 7.2.5程控增益放大器 7.2.6隔离放大器 7.3多通道模拟信号输入技术 7.3.1多路开关 7.3.2常用多路开关 7.3.3模拟多路开关 7.3.4常用模拟多路开关 7.3.5多路模拟开关应用举例 7.3.6多路开关的选用 7.4采样/保持电路设计 7.4.1采样/保持原理 7.4.2集成采样/保持器 7.4.3常用集成采样/保持器 7.4.4采样保持器的应用举例 7.5有源滤波器的设计 7.5.1滤波器分类 7.5.2有源滤波器的设计 7.5.3常用有源滤波器设计举例 7.5.4集成有源滤波器 第八章D/A转换器与MCS-51单片机的接口设计与实践 8.1D/A转换器的基本原理及主要技术指标 8.1.1D/A转换器的基本原理与分类 8.1.2D/A转换器的主要技术指标 8.2D/A转换器件选择指南 8.2.1集成D/A转换芯片介绍 8.2.2D/A转换器的选择要点及选择指南表 8.2.3D/A转换器接口设计的几点实用技术 8.38位D/A转换器DAC080/0831/0832与MCS-51单片机的接口设计 8.3.1DAC0830/0831/0832的应用特性与引脚功能 8.3.2DAC0830/0831/0832与8031单片机的接口设计 8.3.3DAC0830/0831/0832的调试说明 8.3.4DAC0830/0831/0832应用举例 8.48位D/A转换器AD558与MCS-51单片机的接口设计 8.4.1AD558的应用特性与引脚功能 8.4.2AD558与8031单片机的接口及调试说明 8.4.38位D/A转换器DAC0800系列与8031单片机的接口 8.510位D/A转换器AD7522与MCS-51的硬件接口设计 8.5.1AD7522的应用特性及引脚功能 8.5.2AD7522与8031单片机的接口设计 8.610位D/A转换器AD7520/7530/7533与MCS一51单片机的接口设计 8.6.1AD7520/7530/7533的应用特性与引脚功能 8.6.2AD7520系列与8031单片机的接口 8.6.3DAC1020/DAC1220/AD7521系列D/A转换器接口设计 8.712位D/A转换器DAC1208/1209/1210与MCS-51单片机的接口设计 8.7.1DAC1208/1209/1210的内部结构与引脚功能 8.7.2DAC1208/1209/1210与8031单片机的接口设计 8.7.312位D/A转换器DAC1230/1231/1232的应用设计说明 8.7.412位D/A转换器AD7542与8031单片机的接口设计 8.812位串行DAC-AD7543与MCS-51单片机的接口设计 8.8.1AD7543的应用特性与引脚功能 8.8.2AD7543与8031单片机的接口设计 8.914位D/A转换器AD75335与MCS-51单片机的接口设计 8.9.1AD8635的内部结构与引脚功能 8.9.2AD7535与8031单片机的接口设计 8.1016位D/A转换器AD1147/1148与MCS-51单片机的接口设计 8.10.1AD1147/AD1148的内部结构及引脚功能 8.10.2AD1147/AD1148与8031单片机的接口设计 8.10.3AD1147/AD1148接口电路的应用调试说明 8.10.416位D/A转换器AD1145与8031单片机的接口设计 第九章A/D转换器与MCS-51单片机的接口设计与实践 9.1A/D转换器的基本原理及主要技术指标 9.1.1A/D转换器的基本原理与分类 9.1.2A/D转换器的主要技术指标 9.2面对课题如何选择A/D转换器件 9.2.1常用A/D转换器简介 9.2.2A/D转换器的选择要点及应用设计的几点实用技术 9.38位D/A转换器ADC0801/0802/0803/0804/0805与MCS-51单片机的接口设计 9.3.1ADC0801~ADC0805芯片的引脚功能及应用特性 9.3.2ADC0801~ADC0805与8031单片机的接口设计 9.48路8位A/D转换器ADC0808/0809与MCS一51单片机的接口设计 9.4.1ADC0808/0809的内部结构及引脚功能 9.4.2ADC0808/0809与8031单片机的接口设计 9.4.3接口电路设计中的几点注意事项 9.4.416路8位A/D转换器ADC0816/0817与MCS-51单片机的接口设计 9.510位A/D转换器AD571与MCS-51单片机的接口设计 9.5.1AD571芯片的引脚功能及应用特性 9.5.2AD571与8031单片机的接口 9.5.38位A/D转换器AD570与8031单片机的硬件接口 9.612位A/D转换器ADC1210/1211与MCS-51单片机的接口设计 9.6.1ADC1210/1211的引脚功能与应用特性 9.6.2ADC1210/1211与8031单片机的硬件接口 9.6.3硬件接口电路的设计要点及几点说明 9.712位A/D转换器AD574A/1374/1674A与MCS-51单片机的接口设计 9.7.1AD574A的内部结构与引脚功能 9.7.2AD574A的应用特性及校准 9.7.3AD574A与8031单片机的硬件接口设计 9.7.4AD574A的应用调试说明 9.7.5AD674A/AD1674与8031单片机的接口设计 9.8高速12位A/D转换器AD578/AD678/AD1678与MCS—51单片机的接口设计 9.8.1AD578的应用特性与引脚功能 9.8.2AD578高速A/D转换器与8031单片机的接口设计 9.8.3AD578高速A/D转换器的应用调试说明 9.8.4AD678/AD1678采样A/D转换器与8031单片机的接口设计 9.914位A/D转换器AD679/1679与MCS-51单片机的接口设计 9.9.1AD679/AD1679的应用特性及引脚功能 9.9.2AD679/1679与8031单片机的接口设计 9.9.3AD679/1679的调试说明 9.1016位ADC-ADC1143与MCS-51单片机的接口设计 9.10.1ADC1143的应用特性及引脚功能 9.10.2ADC1143与8031单片机的接口设计 9.113位半积分A/D转换器5G14433与MCS-51单片机的接口设计 9.11.15G14433的内部结构及引脚功能 9.11.25G14433的外部电路连接与元件参数选择 9.11.35G14433与8031单片机的接口设计 9.11.45G14433的应用举例 9.124位半积分A/D转换器ICL7135与MCS—51单片机的接口设计 9.12.1ICL7135的内部结构及芯片引脚功能 9.12.2ICL7135的外部电路连接与元件参数选择 9.12.3ICL7135与8031单片机的硬件接口设计 9.124ICL7135的应用举例 9.1312位双积分A/D转换器ICL7109与MCS—51单片机的接口设计 9.13.1ICL7109的内部结构与芯片引脚功能 9.13.2ICL7109的外部电路连接与元件参数选择 9.13.3ICL7109与8031单片机的硬件接口设计 9.1416位积分型ADC一ICL7104与MCS-51单片机的接口设计 9.14.1ICL7104的主要应用特性及引脚功能 9.14.2ICL7104与8031单片机的接口设计 9.14.3其它积分型A/D转换器简介 第十章V/F转换器接口技术 10.1V/F转换的特点及应用环境 10.2V/F转换原理及用V/F转换器实现A/D转换的方法 10.2.1V/F转换原理 10.2.2用V/F转换器实现A/D转换的方法 10.3常用V/F转换器简介 10.3.1VFC32 10.3.2LMX31系列V/F转换器 10.3.3AD650 10.3.4AD651 10.4V/F转换应用系统中的通道结构 10.5LM331应用实例 10.5.1线路原理 10.5.2软件设计 10.6AD650应用实例 10.6.1AD650外围电路设计 10.6.2定时/计数器(8253—5简介) 10.6.3线路原理 10.6.4软件设计 第十一章串行通讯接口技术 11.1串行通讯基础 11.1.1异步通讯和同步通讯 11.1.2波特率和接收/发送时钟 11.1.3单工、半双工、全双工通讯方式 11.14信号的调制与解调 11.1.5通讯数据的差错检测和校正 11.1.6串行通讯接口电路UART、USRT和USART 11.2串行通讯总线标准及其接口 11.2.1串行通讯接口 11.2.2RS-232C接口 11.2.3RS-449、RS-422、RS-423及RS485 11.2.420mA电流环路串行接口 11.3MCS-51单片机串行接口 11.3.1串行口的结构 11.3.2串行接口的工作方式 11.3.3串行通讯中波特率设置 11.4MCS-51单片机串行接口通讯技术 11.4.1单片机双机通讯技术 11.4.2单片机多机通讯技术 11.5IBMPC系列机与单片机的通讯技术 11.5.1异步通讯适配器 11.5.2IBM-PC机与8031双机通讯技术 11.5.3IBM—PC机与8031多机通讯技术 11.6MCS-51单片机串行接口的扩展 11.6.1Intel8251A可编程通讯接口 11.6.2扩展多路串行口的硬件设计 11.6.3通讯软件设计 第十二章应用系统设计中的实用技术 12.1MCS-51单片机低功耗系统设计 12.1.1CHMOS型单片机80C31/80C51/87C51的组成与使用要点 12.1.2CHMOS型单片机的空闲、掉电工作方式 12.1.3CHMOS型单片机的I/O接口及应用系统实例 12.1.4HMOS型单片机的节电运行方式 12.2逻辑电平接口技术 12.2.1集电极开路门输出接口 12.2.2TTL、HTL、ECL、CMOS电平转换接口 12.3电压/电流转换 12.3.1电压/0~10mA转换 12.3.2电压1~5V/4~20mA转换 12.3.30~10mA/0~5V转换 12.344~20mA/0~5V转换 12.3.5集成V/I转换电路 12.4开关量输出接口技术 12.4.1输出接口隔离技术 12.4.2低压开关量信号输出技术 12.4.3继电器输出接口技术 12.4.4可控硅(晶闸管)输出接口技术 12.4.5固态继电器输出接口 12.4.6集成功率电子开关输出接口 12.5集成稳压电路 12.5.1电源隔离技术 12.5.2三端集成稳压器 12.5.3高精度电压基准 12.6量程自动转换技术 12.6.1自动转换量程的硬件电路 12.6.2自动转换量程的软件设计 附录AMCS-51单片机指令速查表 附录B常用EPROM固化电压参考表 参考文献
上传时间: 2013-10-15
上传用户:himbly
一、传感器的定义信息处理技术取得的进展以及微处理器和计算机技术的高速发展,都需要在传感器的开发方面有相应的进展。微处理器现在已经在测量和控制系统中得到了广泛的应用。随着这些系统能力的增强,作为信息采集系统的前端单元,传感器的作用越来越重要。传感器已成为自动化系统和机器人技术中的关键部件,作为系统中的一个结构组成,其重要性变得越来越明显。最广义地来说,传感器是一种能把物理量或化学量转变成便于利用的电信号的器件。国际电工委员会(IEC:International Electrotechnical Committee)的定义为:“传感器是测量系统中的一种前置部件,它将输入变量转换成可供测量的信号”。按照Gopel等的说法是:“传感器是包括承载体和电路连接的敏感元件”,而“传感器系统则是组合有某种信息处理(模拟或数字)能力的传感器”。传感器是传感器系统的一个组成部分,它是被测量信号输入的第一道关口。传感器系统的原则框图示于图1-1,进入传感器的信号幅度是很小的,而且混杂有干扰信号和噪声。为了方便随后的处理过程,首先要将信号整形成具有最佳特性的波形,有时还需要将信号线性化,该工作是由放大器、滤波器以及其他一些模拟电路完成的。在某些情况下,这些电路的一部分是和传感器部件直接相邻的。成形后的信号随后转换成数字信号,并输入到微处理器。德国和俄罗斯学者认为传感器应是由二部分组成的,即直接感知被测量信号的敏感元件部分和初始处理信号的电路部分。按这种理解,传感器还包含了信号成形器的电路部分。传感器系统的性能主要取决于传感器,传感器把某种形式的能量转换成另一种形式的能量。有两类传感器:有源的和无源的。有源传感器能将一种能量形式直接转变成另一种,不需要外接的能源或激励源(参阅图1-2(a))。有源(a)和无源(b)传感器的信号流程无源传感器不能直接转换能量形式,但它能控制从另一输入端输入的能量或激励能传感器承担将某个对象或过程的特定特性转换成数量的工作。其“对象”可以是固体、液体或气体,而它们的状态可以是静态的,也可以是动态(即过程)的。对象特性被转换量化后可以通过多种方式检测。对象的特性可以是物理性质的,也可以是化学性质的。按照其工作原理,传感器将对象特性或状态参数转换成可测定的电学量,然后将此电信号分离出来,送入传感器系统加以评测或标示。各种物理效应和工作机理被用于制作不同功能的传感器。传感器可以直接接触被测量对象,也可以不接触。用于传感器的工作机制和效应类型不断增加,其包含的处理过程日益完善。常将传感器的功能与人类5大感觉器官相比拟: 光敏传感器——视觉;声敏传感器——听觉;气敏传感器——嗅觉;化学传感器——味觉;压敏、温敏、流体传感器——触觉。与当代的传感器相比,人类的感觉能力好得多,但也有一些传感器比人的感觉功能优越,例如人类没有能力感知紫外或红外线辐射,感觉不到电磁场、无色无味的气体等。对传感器设定了许多技术要求,有一些是对所有类型传感器都适用的,也有只对特定类型传感器适用的特殊要求。针对传感器的工作原理和结构在不同场合均需要的基本要求是: 高灵敏度,抗干扰的稳定性(对噪声不敏感),线性,容易调节(校准简易),高精度,高可靠性,无迟滞性,工作寿命长(耐用性) ,可重复性,抗老化,高响应速率,抗环境影响(热、振动、酸、碱、空气、水、尘埃)的能力 ,选择性,安全性(传感器应是无污染的),互换性 低成本 ,宽测量范围,小尺寸、重量轻和高强度,宽工作温度范围 。二、传感器的分类可以用不同的观点对传感器进行分类:它们的转换原理(传感器工作的基本物理或化学效应);它们的用途;它们的输出信号类型以及制作它们的材料和工艺等。根据传感器工作原理,可分为物理传感器和化学传感器二大类:传感器工作原理的分类物理传感器应用的是物理效应,诸如压电效应,磁致伸缩现象,离化、极化、热电、光电、磁电等效应。被测信号量的微小变化都将转换成电信号。化学传感器包括那些以化学吸附、电化学反应等现象为因果关系的传感器,被测信号量的微小变化也将转换成电信号。有些传感器既不能划分到物理类,也不能划分为化学类。大多数传感器是以物理原理为基础运作的。化学传感器技术问题较多,例如可靠性问题,规模生产的可能性,价格问题等,解决了这类难题,化学传感器的应用将会有巨大增长。常见传感器的应用领域和工作原理列于表1.1。按照其用途,传感器可分类为: 压力敏和力敏传感器 ,位置传感器 , 液面传感器 能耗传感器 ,速度传感器 ,热敏传感器,加速度传感器,射线辐射传感器 ,振动传感器,湿敏传感器 ,磁敏传感器,气敏传感器,真空度传感器,生物传感器等。以其输出信号为标准可将传感器分为: 模拟传感器——将被测量的非电学量转换成模拟电信号。数字传感器——将被测量的非电学量转换成数字输出信号(包括直接和间接转换)。膺数字传感器——将被测量的信号量转换成频率信号或短周期信号的输出(包括直接或间接转换)。开关传感器——当一个被测量的信号达到某个特定的阈值时,传感器相应地输出一个设定的低电平或高电平信号。
上传时间: 2013-10-11
上传用户:zhangdebiao
产品型号:VK2C23A/B 产品品牌:VINKA/永嘉微/永嘉微电 封装形式:LQFP64/48 裸片:DICE(邦定COB)/COG(邦定玻璃用) 产品年份:新年份 联 系 人:许硕 原厂直销,工程服务,技术支持,价格最具优势!QT394 VK2C23A/B概述: VK2C23A/B是一个点阵式存储映射的LCD驱动器,可支持最大224点(56SEGx4COM)或者最大416点(52SEGx8COM)的LCD屏。单片机可通过I2C接口配置显示参数和读写显示数据,也可通过指令进入省电模式。其高抗干扰,低功耗的特性适用于水电气表以及工控仪表类产品。 特点: ★ 工作电压 2.4-5.5V ★ 内置32 kHz RC振荡器 ★ 偏置电压(BIAS)可配置为1/3、1/4 ★ COM周期(DUTY)可配置为1/4、1/8 ★ 内置显示RAM为56x4位、52x8位 ★ 帧频可配置为80Hz、160Hz ★ 省电模式(通过关显示和关振荡器进入)
标签: VK2C I2C LCD 23 抗干扰 高稳定 接口 控制 驱动IC
上传时间: 2022-04-16
上传用户:2937735731
VIP专区-嵌入式/单片机编程源码精选合集系列(98)资源包含以下内容:1. 远峰制作的JTAG下载线原理图.2. 这是一个C8051F340的SPI接口驱动AT45DB161D的源码.3. 基于嵌入式实时操作系统UC/OS—Ⅱ的网络控制系统通讯接口设计!.4. 白塞尔大地主题解算法:提供白塞尔大地主题解算法正反算功能。.5. 电阻检测仪器阻值分配程序.6. 基于双线性变换法的IIR滤波器范例 该滤波器为低通原型 可根据需要自行转换成高通 带通 以及重叠累加和重叠保留的例子.7. labview 虚拟与智能仪器 课件ppt类型.8. 电子电路接口定义资料荟萃 电脑周边接口定义.9. 经典的西门子PLC的PPT教程.10. TI最新DSP28335的例子.11. TI最新DSP28335的例子.12. 本文讲解CIC数字滤波器的设计,对设计者有很大的帮助.13. PIC单片机开发的电磁炉程序.调试成功.都生产过了..14. T103的开发程序 能兼容很多屏 可根据需要修改定义.15. 角度传感器KMZ241andUZZ9000和fas-g.16. W3100A网络调试程序,可进行数据传输.17. Wiznet公司推出的带有PPPoE功能的网络芯片W3150A.18. 附件采用EM4095 读头IC来读取Atmel的Tag芯片T5557.19. splitter 好教材要珍惜 嵌入式系统设计.20. 关于MATLAB_GUI的详细逐步介绍,帮助你从入门到精通!.21. 这是ADS8364同步采集器件的使用方面的指导性文件.22. 这是SD卡座的外形尺寸的图纸.23. 这是篇介绍电池监测芯片DS2438的文章.24. FM1702/rc500驱动代码 at89c55wd,汇编语言.25. T118点7寸模拟屏程序.26. 这可是一个重量级工具.27. minigui 源代码.28. 《DSP原理及应用》电子教案.29. 嵌入式C_C++语言精华文章集锦.30. Q2403A封装库.31. 采用驱动嵌入参数间断渐变的控制方法 , 有效实施混沌系统时空行为的追踪控制研究. 数值研究结果表明,驱动信号强度的调谐诱发混沌系统运动行为的序列演变特征. 获得了受控时空混沌的各类数值模拟结果..32. l602的读写.33. 关于电流互感器的设计的文章.34. 5002的51CPU test test test.35. electric bicycle controller procedures used ADDA.36. IC16F72-electric bicycle controller procedures used PIC16F72.37. PIC16F72-electric bicycle controller procedures used PIC16F72.38. 基于 MAXII的CPLD对电机的操作.39. 基于 MAXII 的CPLD 对mobil dram 的读写操作.40. 基于 MAXII CPLD的对Compact_Flash的读写.
上传时间: 2013-04-15
上传用户:eeworm
在能源枯竭及环境污染问题日益严重的今天,光伏发电是未来可再生能源应用的一种重要方法。本文以光伏逆变技术为研究对象,对光伏系统最大功率点跟踪方法、光伏智能充电控制策略、光伏并网系统拓扑结构与控制方法、光伏并网与有源滤波统一控制方法等问题进行了深入研究。 在扰动观测法的基础上,提出了一种直接电流控制最大功率点跟踪方法,通过检测变换器输出电流进行最大功率点跟踪控制,简化控制算法,同时省去了扰动观测法中的电压和电流传感器,降低系统成本。 研究了一种实用的光伏系统蓄电池充电控制策略,将最大功率点跟踪与智能充电控制有机结合在一起,充分利用光伏电池的输出功率,缩短充电时间,提高充电效率;研究了一种全数字式逆变器,通过电压有效值外环和瞬时值内环的双闭环控制,既能保证系统输出电压的稳态精度,又能保证瞬变负载条件下的动态特性。研制了一套3kW光伏独立发电系统并进行了实验验证。 针对住宅型光伏并网逆变器体积小、性能价格比高的要求,研究了一种基于导抗变换器的并网逆变器拓扑结构,相比于传统电流型逆变器,本拓扑省去了笨重的电抗器,同时利用高频变压器进行能量传递和电气隔离,进一步降低了系统损耗和体积,降低系统成本。 经研究发现,由于导抗变换器的固有特性,采用传统的SPWM调制方法将导致并网逆变器输出平顶饱和的非正弦电流,造成对电网的谐波污染,提出了一种新型改进调制模式。该方法可以实现高功率因数、低谐波并网发电。根据上述理论分析,研制了一台3kW单相光伏并网逆变器,实验结果验证了理论分析的正确性。 研究了一种三相电流型并网逆变器拓扑结构及其控制方法,采用改进调制模式对其进行控制,在谐波抑制方面取得了满意的效果。提出的三相并网逆变方案,相比于传统三相并网逆变器,具有如下显著优点:系统中任意一相都是一个独立的子系统,不受其它相影响,即使在某一相或某两相损坏的情况下,剩余相也能正常运行,增加了系统的冗余性;在三相电网不平衡情况下,本方法也能提供稳定的三相电流,增加系统抗电网波动能力。初看起来本方案使用的导抗变换器和变压器有3套,但是每相承受的功率容量只有系统总功率的三分之一,这样可以选用较小容量的器件,有利于高频电感和变压器的制作和生产。提出了一种基于导抗变换器的三相电流型逆变器实现方案,利用导抗变换器将输入直流电压变换为高频正弦电流,经高频变压器隔离及电流等级变换后进行裂相调制,输出为三相正弦电流。该方法不仅省去了传统电流型逆变器直流侧电抗器,而且采用高频变换进行功率传输,减小了隔离变压器及输出滤波器的体积,有利于装置的小型化和降低成本。 针对光伏电池输出电压较低的问题,研究了一种单级式三相升压型并网逆变器,通过一级变换同时实现升压和DC/AC变换功能,并且提出了一种基于DSP芯片的控制策略,本方法仅用一个电压传感器就能替代原先的三个电压传感器:每个载波周期短路相只进行一次开关动作,同时任何时刻只有2个开关管导通,可有效降低系统的开关损耗和导通损耗;由于采用DSP控制,具有控制灵活、稳定性高、成本低、并网电能质量好,便于功率调节等优点。 提出了一种光伏并网与有源滤波兼用的统一控制策略,在同一套装置上既实现光伏并网发电,又实现谐波补偿,克服目前的光伏发电装置白天发电、夜间停机的不足,提高系统利用率。详细分析了无功电流和谐波电流的检测方法、光伏并网发电有功指令电流的生成方法及电流环控制器和电压环控制器的设计方法,并对光伏并网发电与有源滤波统一控制模式和单一有源滤波模式进行了讨论,仿真和实验结果验证了所提出的系统结构及控制策略的正确性和可行性。
上传时间: 2013-04-24
上传用户:dancnc
IIR数字滤波器是冲激响应为无限长的一类数字滤波器,是电子、通信及信号处理领域的重要研究内容,国内外学者对IIR数字滤波器的优化设计进行了大量研究。其中,进化算法优化设计IIR数字滤波器虽然取得了一定的效果,但是其也有自身的一些不足;另外,基于粒子群算法以及人工鱼群算法的IIR数字滤波器优化设计也取得了较好的效果。但这些方法都是将多目标优化问题转化为单目标优化问题,这种方法是将每个目标赋一个权值,然后将这些赋了权值的目标相加,把相加的结果作为目标函数,在此基础上寻找目标函数的最小值,这样做造成的问题是可能将其中的任何一种满足目标函数值最小的情况作为最优解,但实际上得到的不一定是最优解。也就是说,单目标的方法难以区分哪一种情况为最优解,这样的寻优模型从理论上来说是难以得到最优解的。另外,在将多目标转化为单目标时,各个目标的权值难以确定,而且最终只能得到唯一解。针对这些问题,本文在研究传统遗传算法、进化规划算法以及量子遗传算法的IIR数字滤波器优化设计的基础上,将重点研究IIR数字滤波器的粒子进化规划优化、遗传多目标优化以及量子多目标优化。另外,由于在通信系统中IIR数字滤波器有广泛应用,并且大量采用FPGA实现,多目标优化方法得到的滤波器性能也值得验证,因此,对多目标优化方法得到的IIR数字滤波器系数进行FPGA仿真验证有重要的现实意义。 @@ 论文的主要工作及研究成果具体如下: @@ 1.分析IIR数字滤波器的数学模型及其优化设计的参数;针对低通IIR数字滤波器,采用遗传算法及量子遗传算法对其进行优化设计,并给出相应的仿真结果及分析。 @@ 2.针对使用进化规划算法优化设计IIR数字滤波器时容易陷入局部极值的问题,研究粒子进化规划算法,并将其应用于IIR数字滤波器的优化设计,该算法将粒子群优化算法与进化规划算法相结合,继承了粒子群算法局部搜索能力强和进化规划算法遗传父代优良基因能力强的优点。将这种新的粒子进化规划算法应用于IIR低通、高通、带通、带阻数字滤波器的优化设计,显示了较好的效果。 @@ 3.优化设计IIR数字滤波器时,通常将多目标转化为单目标的优化问题,这种方法虽然设计简单,但是在将多目标转化为单目标时,各个目标的权值难以确定,而且最终只能得到唯一解,不能提供更多的有效解给决策者。针对常 用基于单目标优化算法的不足,在分析IIR数字滤波器优化模型和待优化参数的基础上,本文研究遗传算法的IIR数字滤波器多目标优化设计方法,该方法将多个目标值直接映射到适应度函数中,通过比较函数值的占优关系来搜索问题的有效解集,使用这种方法可以求得一组有效解,并且将多目标转化为单目标的优化方法得到的唯一解也能被包括在这一组有效解中。@@ 4.将量子遗传算法应用于IIR数字滤波器多目标优化设计,研究量子遗传算法的IIR数字滤波器多目标优化设计方法,并将优化结果与传统遗传算法的多目标优化方法进行了比较。仿真结果表明,在对同一种滤波器进行优化设计时,使用该方法得到的结果通带波动更小,过渡带更窄,阻带衰减也更大。 @@ 5.针对IIR数字滤波器的硬件实现问题,在对IIR数字滤波器的结构特征进行分析的基础上,分别采用遗传多目标优化方法量子多目标方法优化设计IIR数字滤波器的系数,然后针对两组系数进行了FPGA( Field-Programmable GateArray,现场可编程门阵列)仿真验证,并对两种结果进行了对比分析。 @@关键词:IIR数字滤波器;优化设计
上传时间: 2013-06-09
上传用户:熊少锋