SPMC75F2413A在三相交流感应电机的开环V/F控制的应用:系统输入电源电压为AC110V/AC220V,经全波整流后供系统使用。系统使用Sunplus公司的SPMC75F2413A产生AC三相异步电机的VVVF控制所需的SPWM信号,并完成系统控制。使用三菱公司的智能功率模块PS21865实现电机的功率驱动。在AC220V输入时,系统最大能驱动1.5KW的负载。系统的变频区间为2Hz~200Hz。
上传时间: 2013-11-06
上传用户:924484786
制作一个正弦信号发生器的设计:(1)正弦波输出频率范围:1kHz~10MHz;(2)具有频率设置功能,频率步进:100Hz;(3)输出信号频率稳定度:优于10-2;(4)输出电压幅度:1V到5V这间;(5)失真度:用示波器观察时无明显失真。(6)输出电压幅度:在频率范围内 负载电阻上正弦信号输出电压的峰-峰值Vopp=6V±1V;(7)产生模拟幅度调制(AM)信号:在1MHz~10MHz范围内调制度ma可在30%~100%之间程控调节,步进量50%,正弦调制信号频率为1kHz,调制信号自行产生;(8)产生模拟频率调制(FM)信号:在100kHz~10MHz频率范围内产生20kHz最大频偏,正弦调制信号频率为1kHz,调制信号自行产生;(9)产生二进制PSK、ASK信号:在100kHz固定频率载波进行二进制键控,二进制基带序列码速率固定为10kbps,二进制基带序列信号自行产生;
标签: 正弦信号发生器
上传时间: 2014-12-21
上传用户:Jerry_Chow
本文介绍了uC/GUI 的组织结构,PROTEUS 仿真环境,以及在PROTEUS 仿真环境下实现uC/GUI 移植到MCS51 系列单片机P89C51RD2 的过程;并且对移植过程中涉及到的修正C51调用树和代码优化等问题进行了简明阐述。uC/GUI 是Micrium 公司针对图形LCD 开发的微型图形用户界面函数包。微型是UC/GUI最大的特点,它经过定制后可以运行在8 位的单片机上。uC/GUI 的使用,可以显著减少LCD图形用户界面设计的复杂程度。本文详细介绍了一种基于PROTEUS 仿真环境实现uC/GUI 在MCS51 系列单片机上移植的方法。
上传时间: 2013-11-20
上传用户:wxnumen
用单片机AT89C51改造普通双桶洗衣机:AT89C2051作为AT89C51的简化版虽然去掉了P0、P2等端口,使I/O口减少了,但是却增加了一个电压比较器,因此其功能在某些方面反而有所增强,如能用来处理模拟量、进行简单的模数转换等。本文利用这一功能设计了一个数字电容表,可测量容量小于2微法的电容器的容量,采用3位半数字显示,最大显示值为1999,读数单位统一采用毫微法(nf),量程分四档,读数分别乘以相应的倍率。电路工作原理 本数字电容表以电容器的充电规律作为测量依据,测试原理见图1。电源电路图。 压E+经电阻R给被测电容CX充电,CX两端原电压随充电时间的增加而上升。当充电时间t等于RC时间常数τ时,CX两端电压约为电源电压的63.2%,即0.632E+。数字电容表就是以该电压作为测试基准电压,测量电容器充电达到该电压的时间,便能知道电容器的容量。例如,设电阻R的阻值为1千欧,CX两端电压上升到0.632E+所需的时间为1毫秒,那么由公式τ=RC可知CX的容量为1微法。 测量电路如图2所示。A为AT89C2051内部构造的电压比较器,AT89C2051 图2 的P1.0和P1.1口除了作I/O口外,还有一个功能是作为电压比较器的输入端,P1.0为同相输入端,P1.1为反相输入端,电压比较器的比较结果存入P3.6口对应的寄存器,P3.6口在AT89C2051外部无引脚。电压比较器的基准电压设定为0.632E+,在CX两端电压从0升到0.632E+的过程中,P3.6口输出为0,当电池电压CX两端电压一旦超过0.632E+时,P3.6口输出变为1。以P3.6口的输出电平为依据,用AT89C2051内部的定时器T0对充电时间进行计数,再将计数结果显示出来即得出测量结果。整机电路见图3。电路由单片机电路、电容充电测量电路和数码显示电路等 图3 部分组成。AT89C2051内部的电压比较器和电阻R2-R7等组成测量电路,其中R2-R5为量程电阻,由波段开关S1选择使用,电压比较器的基准电压由5V电源电压经R6、RP1、R7分压后得到,调节RP1可调整基准电压。当P1.2口在程序的控制下输出高电平时,电容CX即开始充电。量程电阻R2-R5每档以10倍递减,故每档显示读数以10倍递增。由于单片机内部P1.2口的上拉电阻经实测约为200K,其输出电平不能作为充电电压用,故用R5兼作其上拉电阻,由于其它三个充电电阻和R5是串联关系,因此R2、R3、R4应由标准值减去1K,分别为999K、99K、9K。由于999K和1M相对误差较小,所以R2还是取1M。数码管DS1-DS4、电阻R8-R14等组成数码显示电路。本机采用动态扫描显示的方式,用软件对字形码译码。P3.0-P3.5、P3.7口作数码显示七段笔划字形码的输出,P1.3-P1.6口作四个数码管的动态扫描位驱动码输出。这里采用了共阴数码管,由于AT89C2051的P1.3-P1.6口有25mA的下拉电流能力,所以不用三极管就能驱动数码管。R8-R14为P3.0-P3.5、P3.7口的上拉电阻,用以驱动数码管的各字段,当P3的某一端口输出低电平时其对应的字段笔划不点亮,而当其输出高电平时,则对应的上拉电阻即能点亮相应的字段笔划。
上传时间: 2013-12-31
上传用户:ming529
用AT89C2051单片机制作的数字电容表:AT89C2051作为AT89C51的简化版虽然去掉了P0、P2等端口,使I/O口减少了,但是却增加了一个电压比较器,因此其功能在某些方面反而有所增强,如能用来处理模拟量、进行简单的模数转换等。本文利用这一功能设计了一个数字电容表,可测量容量小于2微法的电容器的容量,采用3位半数字显示,最大显示值为1999,读数单位统一采用毫微法(nf),量程分四档,读数分别乘以相应的倍率。
上传时间: 2013-11-19
上传用户:wuyuying
单片机系统常用软件抗干扰措施:可靠性设计是一项系统工程,单片机系统的可靠性必须从软件、硬件以及结构设计等方面全面考虑。硬件系统的可靠性设计是单片机系统可靠性的根本,而软件系统的可靠性设计起到抑制外来干扰的作用。软件系统的可靠性设计的主要方法有:开机自检、软件陷阱(进行程序“跑飞”检测)、设置程序运行状态标记、输出端口刷新、输入多次采样、软件“看门狗”等。通过软件系统的可靠性设计,达到最大限度地降低干扰对系统工作的影响,确保单片机及时发现因干扰导致程序出现的错误,并使系统恢复到正常工作状态或及时报警的目的。一、开机自检开机后首先对单片机系统的硬件及软件状态进行检测,一旦发现不正常,就进行相应的处理。开机自检程序通常包括对RAM、ROM、I/O口状态等的检测。1 检测RAM检查RAM读写是否正常,实际操作是向RAM单元写“00H”,读出也应为“00H”,再向其写“FFH”,读出也应为“FFH”。如果RAM单元读写出错,应给出RAM出错提示(声光或其它形式),等待处理。2 检查ROM单元的内容对ROM单元的检测主要是检查ROM单元的内容的校验和。所谓ROM的校验和是将ROM的内容逐一相加后得到一个数值,该值便称校验和。ROM单元存储的是程序、常数和表格。一旦程序编写完成,ROM中的内容就确定了,其校验和也就是唯一的。若ROM校验和出错,应给出ROM出错提示(声光或其它形式),等待处理。3 检查I/O口状态首先确定系统的I/O口在待机状态应处的状态,然后检测单片机的I/O口在待机状态下的状态是否正常(如是否有短路或开路现象等)。若不正常,应给出出错提示(声光或其它形式),等待处理。4 其它接口电路检测除了对上述单片机内部资源进行检测外,对系统中的其它接口电路,比如扩展的E2PROM、A/D转换电路等,又如数字测温仪中的555单稳测温电路,均应通过软件进行检测,确定是否有故障。只有各项检查均正常,程序方能继续执行,否则应提示出错。
上传时间: 2013-11-02
上传用户:名爵少年
实现公历与农历的转换一般采用查表法,按日查表是速度最快的方法但51 单片机寻址能力有限不可能采用按日查表的方法除按日查外,我们可以通过按月查表和按年查表的方法再通过适当的计算来确定公历日所对应的农历日期,本文采用的是按年查表法最大限度地减少表格所占的程序空间。
上传时间: 2013-11-25
上传用户:ouyangmark
18-2. D/A转换器基本知识18-3. 光导智能小车硬件实现18-4. ADC0832基本应用方法18-5. 光导智能小车软件实现A/D转换器的主要技术指标分辨率 使输出数字量变化一个相邻数码所需输入模拟电压的变化量。常 用二进制的位数表示。 例如:12位ADC的分辨率就是12位,一个10V满刻度的12位ADC能分辨 输入电压变化最小是: 10V×1/212=2.4mV量化误差 ADC把模拟量变为数字量,用数字量近似表示模拟量,这个过程称为量化。量化误差是ADC的有限位数对模拟量进行量化而引起的误差。A/D转换器的主要技术指标偏移误差 指输入信号为零时,输出信号不为零的值,所以有时又称为零值误差。满刻度误差 满刻度误差又称为增益误差。指满刻度输出数码所对应的实际输入电压与理想输入电压之差。线性度 线性度有时又称为非线性度,指转换器实际的转换特性与理想直线的最大偏差。A/D转换器的主要技术指标绝对精度 在一个转换器中,任何数码所对应的实际模拟量输入与理论模拟输入之差的最大值,称为绝对精度。对于ADC而言,可以在每一个阶梯的水平中点进行测量,它包括了所有的误差。转换速率 指ADC能够重复进行数据转换的速度,即每秒转换的次数。而完成一次A/D转换所需的时间(包括稳定时间),则是转换速率的倒数。
上传时间: 2013-11-25
上传用户:banlangen
用C 语言来开发单片机系统软件最大的好处是编写代码效率高、软件调试直观、维护升级方便、代码的重复利用率高、便于跨平台的代码移植等等,因此C 语言编程在单片机系统设计中已得到越来越广泛的运用。针对PIC 单片机的软件开发,同样可以用C 语言实现。但在单片机上用C 语言写程序和在PC 机上写程序绝对不能简单等同。现在的PC 机资源十分丰富,运算能力强大,因此程序员在写PC 机的应用程序时几乎不用关心编译后的可执行代码在运行过程中需要占用多少系统资源,也基本不用担心运行效率有多高。写单片机的C 程序最关键的一点是单片机内的资源非常有限,控制的实时性要求又很高,因此,如果没有对单片机体系结构和硬件资源作详尽的了解,以笔者的愚见认为是无法写出高质量实用的C 语言程序。这就是为什么前面所有章节中的的示范代码全部用基础的汇编指令实现的原因,希望籍此能使读者对PIC 单片机的指令体系和硬件资源有深入了解,在这基础之上再来讨论C 语言编程,就有水到渠成的感觉。本书围绕中档系列PIC 单片机来展开讨论,Microchip 公司自己没有针对中低档系列PIC单片机的C 语言编译器,但很多专业的第三方公司有众多支持PIC 单片机的C 语言编译器提供,常见的有Hitech、CCS、IAR、Bytecraft 等公司。其中笔者最常用的是Hitech 公司的PICC编译器,它稳定可靠,编译生成的代码效率高,在用PIC 单片机进行系统设计和开发的工程师群体中得到广泛认可。其正式完全版软件需要购置,但在其网站上有限时的试用版供用户评估。另外,Hitech 公司针对广大PIC 的业余爱好者和初学者还提供了完全免费的学习版PICC-Lite 编译器套件,它的使用方式和完全版相同,只是支持的PIC 单片机型号限制在PIC16F84、PIC16F877 和PIC16F628 等几款。这几款Flash 型的单片机因其所具备的丰富的片上资源而最适用于单片机学习入门,因此笔者建议感兴趣的读者可从PICC-Lite 入手掌握PIC 单片机的C 语言编程。
上传时间: 2013-11-17
上传用户:aa54
LTC1732 是LINEAR TECHNOLOGY 公司推出的锂离子电池充电控制集成电路芯片。它具有电池插入检测和自动低压电池充电功能。文章介绍了该芯片的结构、特点、工作原理及应用信息,给出了典型的应用电路。 LTC1732 是LINEAR TECHNOLOGY 公司生产的锂-离子(Li-离子)电池恒流/恒压线性充电控制器。它也可以对镍-镉(NiCd)和镍-氢(NiMH)电池恒流充电。其充电电流可通过外部传感电阻器编程到7%(最大值)的精度。最终的浮动电压精度为1%。利用LTC1732 的SEL 端可为4.1V 或4.2V 电池充电。当输入电源撤消后,LTC1732 可自动进入低电流睡眠状态,以使消耗电流下降到7μA。LTC1732 的内部比较器用于检测充电结束条件(C/10),而总的充电时间则是通过可编程计时器的外部电容来设置的。在电池完全放电后,控制器将自动以规定电流的10%对被充电电池进行慢速充电直到电池电压超过2.457V。当放电后的电池插入充电器或当输入电源接通时,LTC1732 将开始重新充电。另外,如果电池一直插入在充电器且在电池电压降到3.8V(LTC1732-4)或4.05V(LTC1732-4.2)以下时,充电器也将开始重新充电。LTC1732 的其它主特点如下:●具有1%的预置充电电压精度;●输入电压范围4.5V~12V;●充电电流可编程控制;●具有C/10 充电电流检测输出;●可编程控制充电终端计时;●带有低电压电池自动小电流充电模式;●可编程控制恒定电流接通模式;●具有电池插入检测和自动低压电流充电功能;●带有输入电源(隔离适配器)检测输出;●LTC1732-4.2 型器件的再充电阈值电压为4.05V;●LTC1732-4 型器件的再充电阈值电压为3.8V。
上传时间: 2013-11-12
上传用户:semi1981