时域有限差分法的算法 时域有限差分法的算法
上传时间: 2017-09-05
上传用户:x4587
matlab里FFT变换时的频移程序,自动将FFT变化后的数据移到零频两边,方便好用
上传时间: 2013-12-09
上传用户:talenthn
QPSK开环载波同步技术研究 频偏估计算法
上传时间: 2017-09-08
上传用户:15071087253
音乐信号处理 实现时域延时和混响的处理 实现频域均衡器的设计
上传时间: 2017-09-11
上传用户:wang0123456789
自适应均衡器的LMS算法实现及其仿真 :自适应均衡器已广泛应用于通信、雷达、声纳、控制和生物医学工程等许多领域,为克服多径衰落和信道失真 引起的码间干扰,实时跟踪移动通信信道的时变特性,笔者设计了一个基于LMS 算法的自适应线性均衡器,并通过改变步 长因子Δ来分析其收敛速度和均方误差特性.
上传时间: 2017-09-17
上传用户:lindor
一种AVR单片机的快速工频干扰滤除算法 很难找的到哦
上传时间: 2017-09-18
上传用户:天诚24
算法框架: a.. 问题的解空间:应用回溯法解问题时,首先应明确定义问题的解空间。问题的解空间应到少包含问题的一个(最优)解。 b. 回溯法的基本思想:确定了解空间的组织结构后,回溯法就从开始结点(根结点)出发,以深度优先的方式搜索整个解空间。这个开始结点就成为一个活结点,同时也成为当前的扩展结点。在当前的扩展结点处,搜索向纵深方向移至一个新结点。这个新结点就成为一个新的活结点,并成为当前扩展结点。如果在当前的扩展结点处不能再向纵深方向移动,则当前扩展结点就成为死结点。换句话说,这个结点不再是一个活结点。此时,应往回移动(回溯)至最近的一个活结点处,并使这个活结点成为当前的扩展结点。回溯法即以这种工作方式递归地在解空间中搜索,直至找到所要求的解或解空间中已没有活结点时为止。 (3). 运用回溯法解题通常包含以下三个步骤: a. 针对所给问题,定义问题的解空间; b. 确定易于搜索的解空间结构; c. 以深度优先的方式搜索解空间,并且在搜索过程中用剪枝函数避免无效搜索;
上传时间: 2017-09-21
上传用户:sdq_123
用NS- 2 仿真各种路由协议性能时用到的传统运动场景发生器存在两个缺陷: 运动状态不能迅速过渡到稳态, 节点速度的 均匀分布区间起始值只能为0。为了弥补上述缺陷, Tracy Camp 研制了稳态运动场景发生器。通过仿真验证了采用该发生器可大 大缩短仿真时间, 在此基础上仿真AODV 和DSDV 两种路由协议, 首次从吞吐量、协议包开销、平均延迟三个方面对稳态运动场景 下的两种路由协议性能进行分析, 得出结论表明采用稳态运动场景进行路由协议仿真是非常必要的。 关键词: 稳态运动场景 setdest 更新过程 Random Waypoint
上传时间: 2014-12-05
上传用户:busterman
遗传算法为群体优化算法,也就是从多个初始解开始进行优化,每个解称为一个染色体,各染色体之间通过竞争、合作、单独变异,不断进化。 优化时先要将实际问题转换到遗传空间,就是把实际问题的解用染色体表示,称为编码,反过程为解码,因为优化后要进行评价,所以要返回问题空间,故要进行解码。SGA采用二进制编码,染色体就是二进制位串,每一位可称为一个基因;解码时应注意将染色体解码到问题可行域内。 遗传算法模拟“适者生存,优胜劣汰”的进化机制,染色体适应生存环境的能力用适应度函数衡量。对于优化问题,适应度函数由目标函数变换而来。一般遗传算法求解最大值问题,如果是最小值问题,则通过取倒数或者加负号处理。SGA要求适应度函数>0,对于<0的问题,要通过加一个足够大的正数来解决。这样,适应度函数值大的染色体生存能力强。 遗传算法有三个进化算子:选择(复制)、交叉和变异。 SGA中,选择采用轮盘赌方法,也就是将染色体分布在一个圆盘上,每个染色体占据一定的扇形区域,扇形区域的面积大小和染色体的适应度大小成正比。如果轮盘中心装一个可以转动的指针的话,旋转指针,指针停下来时会指向某一个区域,则该区域对应的染色体被选中。显然适应度高的染色体由于所占的扇形区域大,因此被选中的几率高,可能被选中多次,而适应度低的可能一次也选不中,从而被淘汰。算法实现时采用随机数方法,先将每个染色体的适应度除以所有染色体适应度的和,再累加,使他们根据适应度的大小分布于0-1之间,适应度大的占的区域大,然后随机生成一个0-1之间的随机数,随机数落到哪个区域,对应的染色体就被选中。重复操作,选出群体规模规定数目的染色体。这个操作就是“优胜劣汰,适者生存”,但没有产生新个体。 交叉模拟有性繁殖,由两个染色体共同作用产生后代,SGA采用单点交叉。由于SGA为二进制编码,所以染色体为二进制位串,随机生成一个小于位串长度的随机整数,交换两个染色体该点后的那部分位串。参与交叉的染色体是轮盘赌选出来的个体,并且还要根据选择概率来确定是否进行交叉(生成0-1之间随机数,看随机数是否小于规定的交叉概率),否则直接进入变异操作。这个操作是产生新个体的主要方法,不过基因都来自父辈个体。 变异采用位点变异,对于二进制位串,0变为1,1变为0就是变异。采用概率确定变异位,对每一位生成一个0-1之间的随机数,看是否小于规定的变异概率,小于的变异,否则保持原状。这个操作能够使个体不同于父辈而具有自己独立的特征基因,主要用于跳出局部极值。 遗传算法认为生物由低级到高级进化,后代比前一代强,但实际操作中可能有退化现象,所以采用最佳个体保留法,也就是曾经出现的最好个体,一定要保证生存下来,使后代至少不差于前一代。大致有两种类型,一种是把出现的最优个体单独保存,最后输出,不影响原来的进化过程;一种是将最优个体保存入子群,也进行选择、交叉、变异,这样能充分利用模式,但也可能导致过早收敛。 由于是基本遗传算法,所以优化能力一般,解决简单问题尚可,高维、复杂问题就需要进行改进了。 下面为代码。函数最大值为3905.9262,此时两个参数均为-2.0480,有时会出现局部极值,此时一个参数为-2.0480,一个为2.0480。算法中变异概率pm=0.05,交叉概率pc=0.8。如果不采用最优模式保留,结果会更丰富些,也就是算法最后不一定收敛于极值点,当然局部收敛现象也会有所减少,但最终寻得的解不一定是本次执行中曾找到过的最好解。
标签: 遗传算法
上传时间: 2015-06-04
上传用户:芃溱溱123
压缩包中有5篇论文,分别为《Data-driven analysis of variables and dependencies in continuous optimization problems and EDAs》这是一篇博士论文,较为详细的介绍了各种EDA算法;《Anisotropic adaptive variance scaling for Gaussian estimation of distribution algorithm》《Enhancing Gaussian Estimation of Distribution Algorithm by Exploiting Evolution Direction with Archive》《Niching an Archive-based Gaussian Estimation of Distribution Algorithm via Adaptive Clustering》《Supplementary material for Enhancing Gaussian Estimation of Distribution Algorithm by Exploiting Evolution Direction with Archive》《基于一般二阶混合矩的高斯分布估计算法》介绍了一些基于EDA的创新算法。
上传时间: 2020-05-25
上传用户:duwenhao