虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

数字电路系统

  • 大动态范围AGC系统的构建与仿真

    针对科研实践中需要采集大动态范围模拟信号的问题,构建基于可变增益放大器8369的数字AGC系统。采用基于双斜率滤波技术的设计,给出AGC控制算法的实现流程,利用Matlab仿真引入算例证明算法的可行性,并讨论算法中关键参数取值对控制精度的影响。实际系统达到50dB动态范围的设计目标。

    标签: AGC 动态范围 仿真

    上传时间: 2013-12-22

    上传用户:lx9076

  • 时钟分相技术应用

    摘要: 介绍了时钟分相技术并讨论了时钟分相技术在高速数字电路设计中的作用。 关键词: 时钟分相技术; 应用 中图分类号: TN 79  文献标识码:A   文章编号: 025820934 (2000) 0620437203 时钟是高速数字电路设计的关键技术之一, 系统时钟的性能好坏, 直接影响了整个电路的 性能。尤其现代电子系统对性能的越来越高的要求, 迫使我们集中更多的注意力在更高频率、 更高精度的时钟设计上面。但随着系统时钟频率的升高。我们的系统设计将面临一系列的问 题。 1) 时钟的快速电平切换将给电路带来的串扰(Crosstalk) 和其他的噪声。 2) 高速的时钟对电路板的设计提出了更高的要求: 我们应引入传输线(T ransm ission L ine) 模型, 并在信号的匹配上有更多的考虑。 3) 在系统时钟高于100MHz 的情况下, 应使用高速芯片来达到所需的速度, 如ECL 芯 片, 但这种芯片一般功耗很大, 再加上匹配电阻增加的功耗, 使整个系统所需要的电流增大, 发 热量增多, 对系统的稳定性和集成度有不利的影响。 4) 高频时钟相应的电磁辐射(EM I) 比较严重。 所以在高速数字系统设计中对高频时钟信号的处理应格外慎重, 尽量减少电路中高频信 号的成分, 这里介绍一种很好的解决方法, 即利用时钟分相技术, 以低频的时钟实现高频的处 理。 1 时钟分相技术 我们知道, 时钟信号的一个周期按相位来分, 可以分为360°。所谓时钟分相技术, 就是把 时钟周期的多个相位都加以利用, 以达到更高的时间分辨。在通常的设计中, 我们只用到时钟 的上升沿(0 相位) , 如果把时钟的下降沿(180°相位) 也加以利用, 系统的时间分辨能力就可以 提高一倍(如图1a 所示)。同理, 将时钟分为4 个相位(0°、90°、180°和270°) , 系统的时间分辨就 可以提高为原来的4 倍(如图1b 所示)。 以前也有人尝试过用专门的延迟线或逻辑门延时来达到时钟分相的目的。用这种方法产生的相位差不够准确, 而且引起的时间偏移(Skew ) 和抖动 (J itters) 比较大, 无法实现高精度的时间分辨。 近年来半导体技术的发展, 使高质量的分相功能在一 片芯片内实现成为可能, 如AMCC 公司的S4405, CY2 PRESS 公司的CY9901 和CY9911, 都是性能优异的时钟 芯片。这些芯片的出现, 大大促进了时钟分相技术在实际电 路中的应用。我们在这方面作了一些尝试性的工作: 要获得 良好的时间性能, 必须确保分相时钟的Skew 和J itters 都 比较小。因此在我们的设计中, 通常用一个低频、高精度的 晶体作为时钟源, 将这个低频时钟通过一个锁相环(PLL ) , 获得一个较高频率的、比较纯净的时钟, 对这个时钟进行分相, 就可获得高稳定、低抖动的分 相时钟。 这部分电路在实际运用中获得了很好的效果。下面以应用的实例加以说明。2 应用实例 2. 1 应用在接入网中 在通讯系统中, 由于要减少传输 上的硬件开销, 一般以串行模式传输 图3 时钟分为4 个相位 数据, 与其同步的时钟信号并不传输。 但本地接收到数据时, 为了准确地获取 数据, 必须得到数据时钟, 即要获取与数 据同步的时钟信号。在接入网中, 数据传 输的结构如图2 所示。 数据以68MBös 的速率传输, 即每 个bit 占有14. 7ns 的宽度, 在每个数据 帧的开头有一个用于同步检测的头部信息。我们要找到与它同步性好的时钟信号, 一般时间 分辨应该达到1ö4 的时钟周期。即14. 7ö 4≈ 3. 7ns, 这就是说, 系统时钟频率应在300MHz 以 上, 在这种频率下, 我们必须使用ECL inp s 芯片(ECL inp s 是ECL 芯片系列中速度最快的, 其 典型门延迟为340p s) , 如前所述, 这样对整个系统设计带来很多的困扰。 我们在这里使用锁相环和时钟分相技术, 将一个16MHz 晶振作为时钟源, 经过锁相环 89429 升频得到68MHz 的时钟, 再经过分相芯片AMCCS4405 分成4 个相位, 如图3 所示。 我们只要从4 个相位的68MHz 时钟中选择出与数据同步性最好的一个。选择的依据是: 在每个数据帧的头部(HEAD) 都有一个8bit 的KWD (KeyWord) (如图1 所示) , 我们分别用 这4 个相位的时钟去锁存数据, 如果经某个时钟锁存后的数据在这个指定位置最先检测出这 个KWD, 就认为下一相位的时钟与数据的同步性最好(相关)。 根据这个判别原理, 我们设计了图4 所示的时钟分相选择电路。 在板上通过锁相环89429 和分相芯片S4405 获得我们所要的68MHz 4 相时钟: 用这4 个 时钟分别将输入数据进行移位, 将移位的数据与KWD 作比较, 若至少有7bit 符合, 则认为检 出了KWD。将4 路相关器的结果经过优先判选控制逻辑, 即可输出同步性最好的时钟。这里, 我们运用AMCC 公司生产的 S4405 芯片, 对68MHz 的时钟进行了4 分 相, 成功地实现了同步时钟的获取, 这部分 电路目前已实际地应用在某通讯系统的接 入网中。 2. 2 高速数据采集系统中的应用 高速、高精度的模拟- 数字变换 (ADC) 一直是高速数据采集系统的关键部 分。高速的ADC 价格昂贵, 而且系统设计 难度很高。以前就有人考虑使用多个低速 图5 分相技术应用于采集系统 ADC 和时钟分相, 用以替代高速的ADC, 但由 于时钟分相电路产生的相位不准确, 时钟的 J itters 和Skew 比较大(如前述) , 容易产生较 大的孔径晃动(Aperture J itters) , 无法达到很 好的时间分辨。 现在使用时钟分相芯片, 我们可以把分相 技术应用在高速数据采集系统中: 以4 分相后 图6 分相技术提高系统的数据采集率 的80MHz 采样时钟分别作为ADC 的 转换时钟, 对模拟信号进行采样, 如图5 所示。 在每一采集通道中, 输入信号经过 缓冲、调理, 送入ADC 进行模数转换, 采集到的数据写入存储器(M EM )。各个 采集通道采集的是同一信号, 不过采样 点依次相差90°相位。通过存储器中的数 据重组, 可以使系统时钟为80MHz 的采 集系统达到320MHz 数据采集率(如图6 所示)。 3 总结 灵活地运用时钟分相技术, 可以有效地用低频时钟实现相当于高频时钟的时间性能, 并 避免了高速数字电路设计中一些问题, 降低了系统设计的难度。

    标签: 时钟 分相 技术应用

    上传时间: 2013-12-17

    上传用户:xg262122

  • 中兴通讯硬件巨作:信号完整性基础知识

    中兴通讯硬件一部巨作-信号完整性 近年来,通讯技术、计算机技术的发展越来越快,高速数字电路在设计中的运用越来 越多,数字接入设备的交换能力已从百兆、千兆发展到几十千兆。高速数字电路设计对信 号完整性技术的需求越来越迫切。 在中、 大规模电子系统的设计中, 系统地综合运用信号完整性技术可以带来很多好处, 如缩短研发周期、降低产品成本、降低研发成本、提高产品性能、提高产品可靠性。 数字电路在具有逻辑电路功能的同时,也具有丰富的模拟特性,电路设计工程师需要 通过精确测定、或估算各种噪声的幅度及其时域变化,将电路抗干扰能力精确分配给各种 噪声,经过精心设计和权衡,控制总噪声不超过电路的抗干扰能力,保证产品性能的可靠 实现。 为了满足中兴上研一所的科研需要, 我们在去年和今年关于信号完整性技术合作的基 础上,克服时间紧、任务重的困难,编写了这份硬件设计培训系列教材的“信号完整性” 部分。由于我们的经验和知识所限,这部分教材肯定有不完善之处,欢迎广大读者和专家 批评指正。 本教材的对象是所内硬件设计工程师, 针对我所的实际情况, 选编了第一章——导论、 第二章——数字电路工作原理、第三章——传输线理论、第四章——直流供电系统设计, 相信会给大家带来益处。同时,也希望通过我们的不懈努力能消除大家在信号完整性方面 的烦脑。 在编写本教材的过程中,得到了沙国海、张亚东、沈煜、何广敏、钟建兔、刘辉、曹 俊等的指导和帮助,尤其在审稿时提出了很多建设性的意见,在此一并致谢!

    标签: 中兴通讯 硬件 信号完整性 基础知识

    上传时间: 2013-11-15

    上传用户:大三三

  • 差分线对的PCB设计要点

      信号完整性是高速数字系统中要解决的一个首要问题之一,如何在高速PCB 设计过程中充分考虑信号完整性因素,并采取有效的控制措施,已经成为当今系统设计能否成功的关键。在这方面,差分线对具有很多优势,比如更高的比特率 ,更低的功耗 ,更好的噪声性能和更稳定的可靠性等。目前,差分线对在高速数字电路设计中的应用越来越广泛,电路中最关键的信号往往都要采用差分线对设计。介绍了差分线对在PCB 设计中的一些要点,并给出具体设计方案。

    标签: PCB 差分线

    上传时间: 2014-12-24

    上传用户:540750247

  • 信号完整性知识基础(pdf)

    现代的电子设计和芯片制造技术正在飞速发展,电子产品的复杂度、时钟和总线频率等等都呈快速上升趋势,但系统的电压却不断在减小,所有的这一切加上产品投放市场的时间要求给设计师带来了前所未有的巨大压力。要想保证产品的一次性成功就必须能预见设计中可能出现的各种问题,并及时给出合理的解决方案,对于高速的数字电路来说,最令人头大的莫过于如何确保瞬时跳变的数字信号通过较长的一段传输线,还能完整地被接收,并保证良好的电磁兼容性,这就是目前颇受关注的信号完整性(SI)问题。本章就是围绕信号完整性的问题,让大家对高速电路有个基本的认识,并介绍一些相关的基本概念。 第一章 高速数字电路概述.....................................................................................51.1 何为高速电路...............................................................................................51.2 高速带来的问题及设计流程剖析...............................................................61.3 相关的一些基本概念...................................................................................8第二章 传输线理论...............................................................................................122.1 分布式系统和集总电路.............................................................................122.2 传输线的RLCG 模型和电报方程...............................................................132.3 传输线的特征阻抗.....................................................................................142.3.1 特性阻抗的本质.................................................................................142.3.2 特征阻抗相关计算.............................................................................152.3.3 特性阻抗对信号完整性的影响.........................................................172.4 传输线电报方程及推导.............................................................................182.5 趋肤效应和集束效应.................................................................................232.6 信号的反射.................................................................................................252.6.1 反射机理和电报方程.........................................................................252.6.2 反射导致信号的失真问题.................................................................302.6.2.1 过冲和下冲.....................................................................................302.6.2.2 振荡:.............................................................................................312.6.3 反射的抑制和匹配.............................................................................342.6.3.1 串行匹配.........................................................................................352.6.3.1 并行匹配.........................................................................................362.6.3.3 差分线的匹配.................................................................................392.6.3.4 多负载的匹配.................................................................................41第三章 串扰的分析...............................................................................................423.1 串扰的基本概念.........................................................................................423.2 前向串扰和后向串扰.................................................................................433.3 后向串扰的反射.........................................................................................463.4 后向串扰的饱和.........................................................................................463.5 共模和差模电流对串扰的影响.................................................................483.6 连接器的串扰问题.....................................................................................513.7 串扰的具体计算.........................................................................................543.8 避免串扰的措施.........................................................................................57第四章 EMI 抑制....................................................................................................604.1 EMI/EMC 的基本概念..................................................................................604.2 EMI 的产生..................................................................................................614.2.1 电压瞬变.............................................................................................614.2.2 信号的回流.........................................................................................624.2.3 共模和差摸EMI ..................................................................................634.3 EMI 的控制..................................................................................................654.3.1 屏蔽.....................................................................................................654.3.1.1 电场屏蔽.........................................................................................654.3.1.2 磁场屏蔽.........................................................................................674.3.1.3 电磁场屏蔽.....................................................................................674.3.1.4 电磁屏蔽体和屏蔽效率.................................................................684.3.2 滤波.....................................................................................................714.3.2.1 去耦电容.........................................................................................714.3.2.3 磁性元件.........................................................................................734.3.3 接地.....................................................................................................744.4 PCB 设计中的EMI.......................................................................................754.4.1 传输线RLC 参数和EMI ........................................................................764.4.2 叠层设计抑制EMI ..............................................................................774.4.3 电容和接地过孔对回流的作用.........................................................784.4.4 布局和走线规则.................................................................................79第五章 电源完整性理论基础...............................................................................825.1 电源噪声的起因及危害.............................................................................825.2 电源阻抗设计.............................................................................................855.3 同步开关噪声分析.....................................................................................875.3.1 芯片内部开关噪声.............................................................................885.3.2 芯片外部开关噪声.............................................................................895.3.3 等效电感衡量SSN ..............................................................................905.4 旁路电容的特性和应用.............................................................................925.4.1 电容的频率特性.................................................................................935.4.3 电容的介质和封装影响.....................................................................955.4.3 电容并联特性及反谐振.....................................................................955.4.4 如何选择电容.....................................................................................975.4.5 电容的摆放及Layout ........................................................................99第六章 系统时序.................................................................................................1006.1 普通时序系统...........................................................................................1006.1.1 时序参数的确定...............................................................................1016.1.2 时序约束条件...................................................................................1066.2 源同步时序系统.......................................................................................1086.2.1 源同步系统的基本结构...................................................................1096.2.2 源同步时序要求...............................................................................110第七章 IBIS 模型................................................................................................1137.1 IBIS 模型的由来...................................................................................... 1137.2 IBIS 与SPICE 的比较.............................................................................. 1137.3 IBIS 模型的构成...................................................................................... 1157.4 建立IBIS 模型......................................................................................... 1187.4 使用IBIS 模型......................................................................................... 1197.5 IBIS 相关工具及链接..............................................................................120第八章 高速设计理论在实际中的运用.............................................................1228.1 叠层设计方案...........................................................................................1228.2 过孔对信号传输的影响...........................................................................1278.3 一般布局规则...........................................................................................1298.4 接地技术...................................................................................................1308.5 PCB 走线策略............................................................................................134

    标签: 信号完整性

    上传时间: 2014-05-15

    上传用户:dudu1210004

  • 高速PCB基础理论及内存仿真技术(经典推荐)

    第一部分 信号完整性知识基础.................................................................................5第一章 高速数字电路概述.....................................................................................51.1 何为高速电路...............................................................................................51.2 高速带来的问题及设计流程剖析...............................................................61.3 相关的一些基本概念...................................................................................8第二章 传输线理论...............................................................................................122.1 分布式系统和集总电路.............................................................................122.2 传输线的RLCG 模型和电报方程...............................................................132.3 传输线的特征阻抗.....................................................................................142.3.1 特性阻抗的本质.................................................................................142.3.2 特征阻抗相关计算.............................................................................152.3.3 特性阻抗对信号完整性的影响.........................................................172.4 传输线电报方程及推导.............................................................................182.5 趋肤效应和集束效应.................................................................................232.6 信号的反射.................................................................................................252.6.1 反射机理和电报方程.........................................................................252.6.2 反射导致信号的失真问题.................................................................302.6.2.1 过冲和下冲.....................................................................................302.6.2.2 振荡:.............................................................................................312.6.3 反射的抑制和匹配.............................................................................342.6.3.1 串行匹配.........................................................................................352.6.3.1 并行匹配.........................................................................................362.6.3.3 差分线的匹配.................................................................................392.6.3.4 多负载的匹配.................................................................................41第三章 串扰的分析...............................................................................................423.1 串扰的基本概念.........................................................................................423.2 前向串扰和后向串扰.................................................................................433.3 后向串扰的反射.........................................................................................463.4 后向串扰的饱和.........................................................................................463.5 共模和差模电流对串扰的影响.................................................................483.6 连接器的串扰问题.....................................................................................513.7 串扰的具体计算.........................................................................................543.8 避免串扰的措施.........................................................................................57第四章 EMI 抑制....................................................................................................604.1 EMI/EMC 的基本概念..................................................................................604.2 EMI 的产生..................................................................................................614.2.1 电压瞬变.............................................................................................614.2.2 信号的回流.........................................................................................624.2.3 共模和差摸EMI ..................................................................................634.3 EMI 的控制..................................................................................................654.3.1 屏蔽.....................................................................................................654.3.1.1 电场屏蔽.........................................................................................654.3.1.2 磁场屏蔽.........................................................................................674.3.1.3 电磁场屏蔽.....................................................................................674.3.1.4 电磁屏蔽体和屏蔽效率.................................................................684.3.2 滤波.....................................................................................................714.3.2.1 去耦电容.........................................................................................714.3.2.3 磁性元件.........................................................................................734.3.3 接地.....................................................................................................744.4 PCB 设计中的EMI.......................................................................................754.4.1 传输线RLC 参数和EMI ........................................................................764.4.2 叠层设计抑制EMI ..............................................................................774.4.3 电容和接地过孔对回流的作用.........................................................784.4.4 布局和走线规则.................................................................................79第五章 电源完整性理论基础...............................................................................825.1 电源噪声的起因及危害.............................................................................825.2 电源阻抗设计.............................................................................................855.3 同步开关噪声分析.....................................................................................875.3.1 芯片内部开关噪声.............................................................................885.3.2 芯片外部开关噪声.............................................................................895.3.3 等效电感衡量SSN ..............................................................................905.4 旁路电容的特性和应用.............................................................................925.4.1 电容的频率特性.................................................................................935.4.3 电容的介质和封装影响.....................................................................955.4.3 电容并联特性及反谐振.....................................................................955.4.4 如何选择电容.....................................................................................975.4.5 电容的摆放及Layout ........................................................................99第六章 系统时序.................................................................................................1006.1 普通时序系统...........................................................................................1006.1.1 时序参数的确定...............................................................................1016.1.2 时序约束条件...................................................................................1063.2 高速设计的问题.......................................................................................2093.3 SPECCTRAQuest SI Expert 的组件.......................................................2103.3.1 SPECCTRAQuest Model Integrity .................................................2103.3.2 SPECCTRAQuest Floorplanner/Editor .........................................2153.3.3 Constraint Manager .......................................................................2163.3.4 SigXplorer Expert Topology Development Environment .......2233.3.5 SigNoise 仿真子系统......................................................................2253.3.6 EMControl .........................................................................................2303.3.7 SPECCTRA Expert 自动布线器.......................................................2303.4 高速设计的大致流程...............................................................................2303.4.1 拓扑结构的探索...............................................................................2313.4.2 空间解决方案的探索.......................................................................2313.4.3 使用拓扑模板驱动设计...................................................................2313.4.4 时序驱动布局...................................................................................2323.4.5 以约束条件驱动设计.......................................................................2323.4.6 设计后分析.......................................................................................233第四章 SPECCTRAQUEST SIGNAL EXPLORER 的进阶运用..........................................2344.1 SPECCTRAQuest Signal Explorer 的功能包括:................................2344.2 图形化的拓扑结构探索...........................................................................2344.3 全面的信号完整性(Signal Integrity)分析.......................................2344.4 完全兼容 IBIS 模型...............................................................................2344.5 PCB 设计前和设计的拓扑结构提取.......................................................2354.6 仿真设置顾问...........................................................................................2354.7 改变设计的管理.......................................................................................2354.8 关键技术特点...........................................................................................2364.8.1 拓扑结构探索...................................................................................2364.8.2 SigWave 波形显示器........................................................................2364.8.3 集成化的在线分析(Integration and In-process Analysis) .236第五章 部分特殊的运用...............................................................................2375.1 Script 指令的使用..................................................................................2375.2 差分信号的仿真.......................................................................................2435.3 眼图模式的使用.......................................................................................249第四部分:HYPERLYNX 仿真工具使用指南............................................................251第一章 使用LINESIM 进行前仿真.......................................................................2511.1 用LineSim 进行仿真工作的基本方法...................................................2511.2 处理信号完整性原理图的具体问题.......................................................2591.3 在LineSim 中如何对传输线进行设置...................................................2601.4 在LineSim 中模拟IC 元件.....................................................................2631.5 在LineSim 中进行串扰仿真...................................................................268第二章 使用BOARDSIM 进行后仿真......................................................................2732.1 用BOARDSIM 进行后仿真工作的基本方法...................................................2732.2 BoardSim 的进一步介绍..........................................................................2922.3 BoardSim 中的串扰仿真..........................................................................309

    标签: PCB 内存 仿真技术

    上传时间: 2014-04-18

    上传用户:wpt

  • PCB布线原则

    PCB 布线原则连线精简原则连线要精简,尽可能短,尽量少拐弯,力求线条简单明了,特别是在高频回路中,当然为了达到阻抗匹配而需要进行特殊延长的线就例外了,例如蛇行走线等。安全载流原则铜线的宽度应以自己所能承载的电流为基础进行设计,铜线的载流能力取决于以下因素:线宽、线厚(铜铂厚度)、允许温升等,下表给出了铜导线的宽度和导线面积以及导电电流的关系(军品标准),可以根据这个基本的关系对导线宽度进行适当的考虑。印制导线最大允许工作电流(导线厚50um,允许温升10℃)导线宽度(Mil) 导线电流(A) 其中:K 为修正系数,一般覆铜线在内层时取0.024,在外层时取0.048;T 为最大温升,单位为℃;A 为覆铜线的截面积,单位为mil(不是mm,注意);I 为允许的最大电流,单位是A。电磁抗干扰原则电磁抗干扰原则涉及的知识点比较多,例如铜膜线的拐弯处应为圆角或斜角(因为高频时直角或者尖角的拐弯会影响电气性能)双面板两面的导线应互相垂直、斜交或者弯曲走线,尽量避免平行走线,减小寄生耦合等。一、 通常一个电子系统中有各种不同的地线,如数字地、逻辑地、系统地、机壳地等,地线的设计原则如下:1、 正确的单点和多点接地在低频电路中,信号的工作频率小于1MHZ,它的布线和器件间的电感影响较小,而接地电路形成的环流对干扰影响较大,因而应采用一点接地。当信号工作频率大于10MHZ 时,如果采用一点接地,其地线的长度不应超过波长的1/20,否则应采用多点接地法。2、 数字地与模拟地分开若线路板上既有逻辑电路又有线性电路,应尽量使它们分开。一般数字电路的抗干扰能力比较强,例如TTL 电路的噪声容限为0.4~0.6V,CMOS 电路的噪声容限为电源电压的0.3~0.45 倍,而模拟电路只要有很小的噪声就足以使其工作不正常,所以这两类电路应该分开布局布线。3、 接地线应尽量加粗若接地线用很细的线条,则接地电位会随电流的变化而变化,使抗噪性能降低。因此应将地线加粗,使它能通过三倍于印制板上的允许电流。如有可能,接地线应在2~3mm 以上。4、 接地线构成闭环路只由数字电路组成的印制板,其接地电路布成环路大多能提高抗噪声能力。因为环形地线可以减小接地电阻,从而减小接地电位差。二、 配置退藕电容PCB 设计的常规做法之一是在印刷板的各个关键部位配置适当的退藕电容,退藕电容的一般配置原则是:􀁺?电电源的输入端跨½10~100uf的的电解电容器,如果印制电路板的位置允许,采Ó100uf以以上的电解电容器抗干扰效果会更好¡���?原原则上每个集成电路芯片都应布置一¸0.01uf~`0.1uf的的瓷片电容,如遇印制板空隙不够,可Ã4~8个个芯片布置一¸1~10uf的的钽电容(最好不用电解电容,电解电容是两层薄膜卷起来的,这种卷起来的结构在高频时表现为电感,最好使用钽电容或聚碳酸酝电容)。���?对对于抗噪能力弱、关断时电源变化大的器件,ÈRA、¡ROM存存储器件,应在芯片的电源线和地线之间直接接入退藕电容¡���?电电容引线不能太长,尤其是高频旁路电容不能有引线¡三¡过过孔设¼在高ËPCB设设计中,看似简单的过孔也往往会给电路的设计带来很大的负面效应,为了减小过孔的寄生效应带来的不利影响,在设计中可以尽量做到£���?从从成本和信号质量两方面来考虑,选择合理尺寸的过孔大小。例如¶6- 10层层的内存模¿PCB设设计来说,选Ó10/20mi((钻¿焊焊盘)的过孔较好,对于一些高密度的小尺寸的板子,也可以尝试使Ó8/18Mil的的过孔。在目前技术条件下,很难使用更小尺寸的过孔了(当孔的深度超过钻孔直径µ6倍倍时,就无法保证孔壁能均匀镀铜);对于电源或地线的过孔则可以考虑使用较大尺寸,以减小阻抗¡���?使使用较薄µPCB板板有利于减小过孔的两种寄生参数¡���? PCB板板上的信号走线尽量不换层,即尽量不要使用不必要的过孔¡���?电电源和地的管脚要就近打过孔,过孔和管脚之间的引线越短越好¡���?在在信号换层的过孔附近放置一些接地的过孔,以便为信号提供最近的回路。甚至可以ÔPCB板板上大量放置一些多余的接地过孔¡四¡降降低噪声与电磁干扰的一些经Ñ?能能用低速芯片就不用高速的,高速芯片用在关键地方¡?可可用串一个电阻的方法,降低控制电路上下沿跳变速率¡?尽尽量为继电器等提供某种形式的阻尼,ÈRC设设置电流阻尼¡?使使用满足系统要求的最低频率时钟¡?时时钟应尽量靠近到用该时钟的器件,石英晶体振荡器的外壳要接地¡?用用地线将时钟区圈起来,时钟线尽量短¡?石石英晶体下面以及对噪声敏感的器件下面不要走线¡?时时钟、总线、片选信号要远ÀI/O线线和接插件¡?时时钟线垂直ÓI/O线线比平行ÓI/O线线干扰小¡? I/O驱驱动电路尽量靠½PCB板板边,让其尽快离¿PC。。对进ÈPCB的的信号要加滤波,从高噪声区来的信号也要加滤波,同时用串终端电阻的办法,减小信号反射¡? MCU无无用端要接高,或接地,或定义成输出端,集成电路上该接电源、地的端都要接,不要悬空¡?闲闲置不用的门电路输入端不要悬空,闲置不用的运放正输入端接地,负输入端接输出端¡?印印制板尽量使Ó45折折线而不Ó90折折线布线,以减小高频信号对外的发射与耦合¡?印印制板按频率和电流开关特性分区,噪声元件与非噪声元件呀距离再远一些¡?单单面板和双面板用单点接电源和单点接地、电源线、地线尽量粗¡?模模拟电压输入线、参考电压端要尽量远离数字电路信号线,特别是时钟¡?对¶A/D类类器件,数字部分与模拟部分不要交叉¡?元元件引脚尽量短,去藕电容引脚尽量短¡?关关键的线要尽量粗,并在两边加上保护地,高速线要短要直¡?对对噪声敏感的线不要与大电流,高速开关线并行¡?弱弱信号电路,低频电路周围不要形成电流环路¡?任任何信号都不要形成环路,如不可避免,让环路区尽量小¡?每每个集成电路有一个去藕电容。每个电解电容边上都要加一个小的高频旁路电容¡?用用大容量的钽电容或聚酷电容而不用电解电容做电路充放电储能电容,使用管状电容时,外壳要接地¡?对对干扰十分敏感的信号线要设置包地,可以有效地抑制串扰¡?信信号在印刷板上传输,其延迟时间不应大于所有器件的标称延迟时间¡环境效应原Ô要注意所应用的环境,例如在一个振动或者其他容易使板子变形的环境中采用过细的铜膜导线很容易起皮拉断等¡安全工作原Ô要保证安全工作,例如要保证两线最小间距要承受所加电压峰值,高压线应圆滑,不得有尖锐的倒角,否则容易造成板路击穿等。组装方便、规范原则走线设计要考虑组装是否方便,例如印制板上有大面积地线和电源线区时(面积超¹500平平方毫米),应局部开窗口以方便腐蚀等。此外还要考虑组装规范设计,例如元件的焊接点用焊盘来表示,这些焊盘(包括过孔)均会自动不上阻焊油,但是如用填充块当表贴焊盘或用线段当金手指插头,而又不做特别处理,(在阻焊层画出无阻焊油的区域),阻焊油将掩盖这些焊盘和金手指,容易造成误解性错误£SMD器器件的引脚与大面积覆铜连接时,要进行热隔离处理,一般是做一¸Track到到铜箔,以防止受热不均造成的应力集Ö而导致虚焊£PCB上上如果有¦12或或方Ð12mm以以上的过孔时,必须做一个孔盖,以防止焊锡流出等。经济原则遵循该原则要求设计者要对加工,组装的工艺有足够的认识和了解,例È5mil的的线做腐蚀要±8mil难难,所以价格要高,过孔越小越贵等热效应原则在印制板设计时可考虑用以下几种方法:均匀分布热负载、给零件装散热器,局部或全局强迫风冷。从有利于散热的角度出发,印制板最好是直立安装,板与板的距离一般不应小Ó2c,,而且器件在印制板上的排列方式应遵循一定的规则£同一印制板上的器件应尽可能按其发热量大小及散热程度分区排列,发热量小或耐热性差的器件(如小信号晶体管、小规模集³电路、电解电容等)放在冷却气流的最上(入口处),发热量大或耐热性好的器件(如功率晶体管、大规模集成电路等)放在冷却Æ流最下。在水平方向上,大功率器件尽量靠近印刷板的边沿布置,以便缩短传热路径;在垂直方向上,大功率器件尽量靠近印刷板上方布置£以便减少这些器件在工作时对其他器件温度的影响。对温度比较敏感的器件最好安置在温度最低的区域(如设备的µ部),千万不要将它放在发热器件的正上方,多个器件最好是在水平面上交错布局¡设备内印制板的散热主要依靠空气流动,所以在设计时要研究空气流动的路径,合理配置器件或印制电路板。采用合理的器件排列方式,可以有效地降低印制电路的温升。此外通过降额使用,做等温处理等方法也是热设计中经常使用的手段¡

    标签: PCB 布线原则

    上传时间: 2013-11-24

    上传用户:气温达上千万的

  • 单片机仿真软件proteus V7.5 SP3中文版下载_单片机模拟仿真软件

    单片机仿真软件Proteus是英国Labcenter electronics公司出版的EDA工具软件,下面不仅介绍了它的使用方法和Proteus 特色功能,以下还有Proteus的安装方法。Proteus它不仅具有其它EDA工具软件的仿真功能,还能仿真单片机及外围器件。它是目前最好的仿真单片机及外围器件的工具。虽然目前国内推广刚起步,但已受到单片机爱好者、从事单片机教学的教师、致力于单片机开发应用的科技工作者的青睐。Proteus是世界上著名的EDA工具(仿真软件),从原理图布图、代码调试到单片机与外围电路协同仿真,一键切换到PCB设计,真正实现了从概念到产品的完整设计。是目前世界上唯一将电路仿真软件、PCB设计软件和虚拟模型仿真软件三合一的设计平台,其处理器模型支持8051、HC11、PIC10/12/16/18/24/30/DsPIC33、AVR、ARM、8086和MSP430等,2010年即将增加Cortex和DSP系列处理器,并持续增加其他系列处理器模型。在编译方面,它也支持IAR、Keil和MPLAB等多种编译器。 proteusV7.5 SP3中文版安装方法 1.执行setup75 Sp3.exe安装proteus 7.5 Sp3; 2.添加licence时指定到Grassington North Yorkshire.lxk; 3.安装完成后执行LXK Proteus 7.5 SP3 v2.1.,将目录指定到X:\Program Files\Labcenter Electronics\Proteus 7 Professional (X是你安装的盘符), 然后执行update; 汉化方法 将汉化文件解压覆盖到X:\Program Files\Labcenter Electronics\Proteus 7 Professional \BIN 单片机仿真软件Proteus 使用方法 Proteus软件破解版是根据官方放出的Demo版制作而成,其中有很多器件由于没有仿真模型而无法使用,该软件最大的优点在于能够对常用微控制器进行仿真,适合于刚刚接触单片机以及进行数模电综合仿真的用户使用,但是由于仿真精度等等原因,仿真结果不够精细,甚至可能有错误,不要盲目信任仿真结果。 Proteus(海神)的ISIS是一款Labcenter出品的电路分析实物仿真系统,可仿真各种电路和IC,并支持单片机,元件库齐全,使用方便,是不可多得的专业的单片机软件仿真系统。 单片机仿真软件Proteus 特色功能 ① 全部满足我们提出的单片机软件仿真系统的标准,并在同类产品中具有明显的优势。   ②具有模拟电路仿真、数字电路仿真、单片机及其外围电路组成的系统的仿真、RS-232动态仿真、C调试器、SPI调试器、键盘和LCD系统仿真的功能;有各种虚拟仪器,如示波器、逻辑分析仪、信号发生器等。   ③ 目前支持的单片机类型有:68000系列、8051系列、AVR系列、PIC12系列、PIC16系列、PIC18系列、Z80系列、HC11系列以及各种外围芯片。   ④ 支持大量的存储器和外围芯片。总之该软件是一款集单片机和SPICE分析于一身的仿真软件,功能极其强大 ,可仿真51、AVR、PIC。

    标签: proteus 7.5 SP3 单片机仿真软件

    上传时间: 2013-11-08

    上传用户:kernaling

  • proteus7.8破解版(附带Proteus中文入门教程)

    附件下载proteus7.8破解版包含了Proteus中文入门教程在内 Proteus Pro 7.8 sp2 汉化破解版,该Proteus 汉化破解版解决了7.2版本运行10分钟就自动关闭的问题,是目前最Protus中最高的版本。Proteus 不仅具有其它EDA工具软件的仿真功能,还能仿真单片机及外围器件,它是目前最好的仿真单片机及外围器件的工具。从原理图布图、代码调试到单片机与外围电路协同仿真,一键切换到PCB设计,真正实现了从概念到产品的完整设计。 Proteus 是目前世界上唯一将电路仿真软件、PCB设计软件和虚拟模型仿真软件三合一的设计平台,其处理器模型支持8051、HC11、PIC10/12/16/18/24/30/DsPIC33、AVR、ARM、8086和MSP430等,Proteus为您建立完整的电子设计开发环境。中文系统可用,不需修改 “非unicode程序的语言”设置,不用改区域语言设置,也不要安装其他破解。 proteus7.8破解版安装步骤: 先安装P7.8sp2.exe,再运行"Proteus Pro 7.8 SP2破解1.0.exe"破解,再汉化。这个汉化补丁用7.5的汉化修改而来,覆盖前注意备份原文件,如果汉化报错,就将“汉化报错.exe” 复制到安装文件夹再运行。 Proteus 不仅具有其它EDA工具软件的仿真功能,还能仿真单片机及外围器件,它是目前最好的仿真单片机及外围器件的工具。从原理图布图、代码调试到单片机与外围电路协同仿真,一键切换到PCB设计,真正实现了从概念到产品的完整设计。 Proteus中文入门教程 Proteus ISIS是英国Labcenter公司开发的电路分析与实物仿真软件。它运行于Windows操作系统上,可以仿真、分析(SPICE)各种模拟器件和集成电路,该软件的特点是:①实现了单片机仿真和SPICE电路仿真相结合。具有模拟电路仿真、数字电路仿真、单片机及其外围电路组成的系统的仿真、RS232动态仿真、I2C调试器、SPI调试器、键盘和LCD系统仿真的功能;有各种虚拟仪器,如示波器、逻辑分析仪、信号发生器等。②支持主流单片机系统的仿真。目前支持的单片机类型有:68000系列、8051系列、AVR系列、PIC12系列、PIC16系列、PIC18系列、Z80系列、HC11系列以及各种外围芯片。③提供软件调试功能。在硬件仿真系统中具有全速、单步、设置断点等调试功能,同时可以观察各个变量、寄存器等的当前状态,因此在该软件仿真系统中,也必须具有这些功能;同时支持第三方的软件编译和调试环境,如Keil C51 uVision2等软件。④具有强大的原理图绘制功能。总之,该软件是一款集单片机和SPICE分析于一身的仿真软件,功能极其强大。本章介绍Proteus ISIS软件的工作环境和一些基本操作。 Proteus中文入门教程目  录 第一章  概述 2 一、进入Proteus ISIS 2 二、工作界面 3 三、基本操作 3 图形编辑窗口 3 预览窗口(The Overview Window) 4 对象选择器窗口 5 图形编辑的基本操作 5 参考1 10 参考2作原理图仿真调试 12 四、实例一 16 电路图的绘制 17 KeilC与Proteus连接调试 26 五、实例二 30 使用元件工具箱 30 使用状态信息条 30 使用对话框 30 使用仿真信息窗口 30 关闭Proteus ISIS 30 四、菜单命令简述 31 主窗口菜单 31 表格输出窗口(Table)菜单 33 方格输出窗口(Grid)菜单 33 Smith圆图输出窗口(Smith)菜单 33 直方图输出窗口(Histogram)菜单 33 第二章 基于51的PID炉温度调节器的硬件设计及仿真 34

    标签: proteus Proteus 7.8 破解版

    上传时间: 2013-11-20

    上传用户:tangsiyun

  • 单片机电路常识及设计经验.rar

      本资料是关于单片机电路设计的一些经验,希望对大家有所帮助。。。   前言 MCU发展趋势   未来以及相当长的一段时间内,单片机应用技术的发展趋势为:   1、全盘CMOS化   CMOS 电路具有众多的优点,如极宽的工作电压范围、极佳的本质低功耗及功耗管理特征,形成了嵌入式系统独特的低功耗及功耗管理应用技术。   2、最大化的SoC设计   目前单片机已逐渐向片上系统发展,原有的单片机逐渐发展成通用型SoC 单片机(如C8051F 系列)或SoC 的标准IP 内核(如DW8051_core),以及各种专用的SoC 单片机。   3、以串行方式为主的外围扩展   目前单片机外围器件普遍提供了串行扩展方式。串行扩展具有简单、灵活、电路系统简单、占用I/O资源少等优点,是一种流行的扩展方式。   4、8位机仍有巨大发展空间   电路常识性概念(1)-输入、输出阻抗   1、输入阻抗   输入阻抗是指一个电路输入端的等效阻抗。在输入端上加上一个电压源U,测量输入端的电流I,则输入阻抗Rin=U/I。你可以把输入端想象成一个电阻的两端,这个电阻的阻值,就是输入阻抗。   输入阻抗跟一个普通的电抗元件没什么两样,它反映了对电流阻碍作用的大小。   对于电压驱动的电路,输入阻抗越大,则对电压源的负载就越轻,因而就越容易驱动,也不会对信号源有影响;而对于电流驱动型的电路,输入阻抗越小,则对电流源的负载就越轻。因此,我们可以这样认为:如果是用电压源来驱动的,则输入阻抗越大越好;如果是用电流源来驱动的,则阻抗越小越好(注:只适合于低频电路,在高频电路中,还要考虑阻抗匹配问题。另外如果要获取最大输出功率时,也要考虑阻抗匹配问题。)

    标签: 单片机电路 常识 设计经验

    上传时间: 2013-11-08

    上传用户:元宵汉堡包