·内容简介:以数字信号处理器(DSP)为核心的实时数字信号处理技术正在迅猛发展,各种类型的DSP分别适应了不同领域的应用要求。本书根据当今最新的DSP和外围器件技术水平,着重介绍了国内外最常用的4种定点和浮点DSP的原理和应用;全面介绍了DSP的结构特点、指令体系、软件编程、硬件设计和软硬件调试方法;结合具体实例讲述了如何针对不同应用场合,设计DSP的软硬件。 &n
上传时间: 2013-04-24
上传用户:tyg88888
生物医学信号是源于一个生物系统的一类信号,像心音、脑电、生物序列和基因以及神经活动等,这些信号通常含有与生物系统生理和结构状态相关的信息,它们对这些系统状态的研究和诊断具有很大的价值。信号拾取、采集和处理的正确与否直接影响到生物医学研究的准确性,如何有效地从强噪声背景中提取有用的生物医学信号是信号处理技术的重要问题。 设计自适应滤波器对带有工频干扰的生物医学信号进行滤波,从而消除工频干扰,获得最佳的滤波效果是本研究要解决的问题。生物医学信号具有信号弱、噪声强、频率范围较低、随机性强等特点。由于心电(electrocardiogram,ECG)信号的确定性、稳定性、规则性都比其他生物信号高,便于准确评估和检测滤波效果,本研究采用ECG信号作为原始的模板信号。 本研究将新的电子芯片技术与现代信号处理技术相结合,从过去单一的软件算法研究,转向软件与硬件结合,从而提高自适应速度和精度,而且可以使系统的开发周期缩短、成本降低、容易升级和变更。 采用现场可编程逻辑器件(Field Programmable Gate Array,FPGA)作为新的ECG快速提取算法的硬件载体,加快信号处理的速度。为了将ECG快速提取算法转换为常用的适合于FPGA芯片的定点数算法,研究中详细分析了定点数的量化效应对自适应噪声消除器的影响,以及对浮点数算法和定点数算法的复合自适应滤波器的各种参数的选择,如步长因子和字长选择。研究中以定点数算法中的步长因子和字长选择,作为FPGA设计的基础,利用串并结合的硬件结构实现自适应滤波器,并得到了预期的效果,准确提取改善后的ECG信号。 研究中,在MATLAB(Matrix Laboratry)软件的环境下模拟,选取带有50Hz工频干扰的不同信噪比的ECG原始信号,在浮点数情况下,原始信号通过采用最小均方LMS(LeastMean Squares)算法的浮点数自适应滤波器后,根据信噪比的改善和收敛速度,确定不同的最佳μ值,并在定点数情况下,在最佳μ值的情况下,原始信号通过采用LMs算法的定点数自适应滤波器后,根据信噪比的改善效果和采用硬件的经济性,确定最佳的定点数。并了解LMS算法中步长因子、定点数字长值对信号信噪比、收敛速度和硬件经济性的影响。从而得出针对含有工频干扰的不同信噪比的原始ECG,应该采用什么样的μ值和什么样的定点数才能对原始ECG的改善和以后的硬件实现取得最佳的效果,并根据所得到的数据和结果,在FPGA上实现自适应滤波器,使自适应滤波器能对带有工频干扰的ECG原始信号有最佳的滤波效果。
上传时间: 2013-04-24
上传用户:gzming
随着社会、科技、经济的不断发展,视频监控技术因其具有直观、方便、信息内容丰富等特点以及广阔的应用范围,一直受到业界的广泛关注。而随着光纤通信技术的迅速发展,利用光纤通信技术实现视频监控系统的设计已成为视频监控技术发展的一个潮流。 本课题探究的数字视频监控系统支持八路视频信号和反向数据信号的实时传输,系统主要分为视频发送端和视频接收端两部分。系统视频发送端主要包括视频处理模块、反向数据处理模块、FPGA主控处理模块、光收发一体模块,其中FPGA主控处理模块实现的主要功能是系统视频信号传输中视频一次复接处理以及反向数据传输中数据接收和线路解码处理等。系统视频接收端与视频发送端的结构是对应的,主要功能模块同样包括视频处理模块、反向数据处理模块、FPGA主控处理模块、光收发一体模块,其中FPGA主控处理模块实现的主要功能是系统视频信号传输中视频二次分接处理以及反向数据传输中数据线路编码和发送处理等。 本论文的研究重点是八路视频信号传输中数字复分接的设计和反向数据信号传输中线路码的编解码设计。论文首先对课题研究的数字视频监控系统的总体设计进行了详细的介绍,给出了各个功能模块电路的具体实现设计方案;其次认真分析了视频监控系统八路视频信号传输中数字复分接的基本原理和实现方式,讨论了系统视频信号传输中数字复分接的设计思想及实现方案,给出了视频信号复分接的程序设计与仿真验证;最后详细阐述了视频监控系统反向数据信号传输中线路码的选择及实现方式,结合数据光纤传输的性能特点,选用CMI码作为反向数据传输的线路码型,讨论了系统反向数据信号传输中CMI编解码的设计思路及实现方案,给出了数据信号CMI编解码的程序设计与仿真验证。 论文的关键部分主要是FPGA主控处理模块的程序设计,利用VHDL硬件描述语言完成视频数字复分接和反向数据CMI编解码的程序设计,并在QuanusII软件开发平台下完成了系统的程序设计与仿真验证。
上传时间: 2013-05-31
上传用户:fudong911
· 摘要: 数字信号处理(DSP)具有并行的硬件乘法器、流水线结构以及快速的片内存储器等资源,其技术广泛地应用于数字信号处理的各个领域.介绍了IIR数字滤波器的原理,利用MATLAB软件生成滤波器的输入数据和系数,进行相应的数据压缩处理,并生成仿真波形,最后给出了用DSP语言实现IIR数字滤波器的仿真结果,同时对仿真结果进行了分析、比较,确保了输出波形的精确度. &n
上传时间: 2013-04-24
上传用户:ykykpb
高精度的信号源是各种测试和实验过程中不可缺少的工具,在通信、雷达、测量、控制、教学等领域应用十分广泛。传统的频率合成方法设计的信号源在功能、精度、成本等方面均存在缺陷和不足,不能满足电子技术的发展要求,直接数字合成(Direct Digital Synthesis)DDS技术可以提供高性能、高频高精度的信号源,方便地获得分辨率高且相位连续的信号,基于FPGA的DDS技术提供了升级方便并且成本低廉的解决方案。 本文对DDS的基本原理和输出频谱特性进行理论分析,总结出杂散分布规律。同时以DDS的频谱分析为基础,给出了几种改善杂散的方法。本文结合相关文献资料采用傅立叶变换的方法对相位截断时DDS杂散信号的频谱特性进行了研究,得到了杂散分布的规律性结论,并应用在程序设计程中;DDS技术的实现依赖于高速、高性能的数字器件,本文将FPGA器件和DDS技术相结合,确定了FPGA器件的整体设计方案,详细说明了各个模块的功能和设计方法,并对其关键部分进行了优化设计,从而实现了波形发生器数字电路部分的功能。软件部分采用模块设计方法,十分方便调试。为了得到满足设计要求的模拟波形,本文还设计了幅度调节、D/A转换和低通滤波等外围硬件电路。 实验结果表明,本文设计的基于DDS技术的多波形信号源基本能够满足普通学生实验室的要求。
上传时间: 2013-06-11
上传用户:woshiayin
·这是一本关于数字波形产生、数字滤波器设计、数字信号处理工具及技术应用的最新综合性教材。全书共包含9章及7个附录,前8章分别介绍了DSP开发系统、DSK的输入输出、C6x系列处理器的体系结构和指令集、有限冲激响应滤波器、无限冲激响应滤波器、快速傅里叶变换、自适应滤波器、程序代码优化技术等内容,第9章为DSP的应用及学生的一些课程设计。每章开始主要介绍基本理论,然后给出一些具体例子和必要的背景知识,最
上传时间: 2013-05-31
上传用户:zzbin_2000
本书比较全面地阐述了fpga在数字信号处理中的应用问题。 数字信号处理的FPGA实现 本书共分8章,主要内容包括典型fpga器件的介绍、vhdl硬件描述语言、fpga设计中常用软件简介、用fpga实现数字信号处理的数据规划、多种结构类型的fir数字滤波器的fpga实现、不同结构fft的fpga实现、数字正交下变频的fpga实现、cordic和dds的fpga实现等。本书紧密贴合工程实践,以一个fpga设计开发人员的切身体会去叙述每一个应用实例,以一个fpga教学工作者的实践经验去梳理和组织繁杂的知识点。 本书可作为高等院校通信、数字信号处理、电子工程等专业的本科生教材,也可供相关专业的研究生和从事雷达、电子侦察、通信等工作的技术人员参考。
上传时间: 2013-06-04
上传用户:y562413679
资源简介《PCB电磁兼容技术:设计实践》集实践和理论于一体,概括了数字电路印制电路板电磁兼容性设计的重点,适合那些涉及系统设计、逻辑设计、硬件设计、PCB布局的工程技术人员,同时适合测试工程师和技师,从事机电产品、加工、制造和兼容调试工作的人员,电磁兼容设计工程师,以及负责对硬件工程设计进行管理和质量控制的人员阅读参考。
上传时间: 2013-07-24
上传用户:3到15
FIR数字滤波器设计FPGA实现的研究。流水线技术在文中得到了应用,提高了数据处理的速度
上传时间: 2013-08-06
上传用户:wangyi39
尽管频率合成技术已经经历了大半个世纪的发展史,但直到今天,人们对\\r\\n它的研究仍然在继续。现在,我们可以开发出输出频率高达IG的DDS系统,\\r\\n武汉理工大学硕士学位论文\\r\\n已能满足绝大多数频率源的要求,集成DDS产品的信噪比也可达到75dB以上,\\r\\n已达到锁相频率合成的一般水平。电子技术的发展己进入数字时代,模拟信号\\r\\n数字化的方法也是目前一个热门研究课题,高速AD、DA器件在通信、广播电\\r\\n视等领域的应用越来越广泛。本次设计完成了软件仿真和硬件实现,对设计原
上传时间: 2013-08-21
上传用户:asdkin