该课题通过对开放式数控技术的全面调研和对运动控制技术的深入研究,并针对国内运动控制技术的研究起步较晚的现状,结合激光雕刻领域的具体需要,紧跟当前运动控制技术研究的发展趋势,吸收了世界开放式数控技术和相关运动控制技术的最新成果,采纳了基于DSP和FPGA的方案,研制了一款比较新颖的、功能强大的、具有很大柔性的四轴多功能运动控制卡.该论文主要内容如下:首先,通过对制造业、开放式数控系统、运动控制卡等行业现状的全面调研,基于对运动系统控制技术的深入学习,在比较了几种常用的运动控制方案的基础上,确定了基于DSP和FPGA的运动控制设计方案,并规划了板卡的总体结构.其次,针对运动控制中的一些具体问题,如高速、高精度、运动平稳性、实时控制以及多轴联动等,在FPGA上设计了功能相互独立的四轴运动控制电路,仔细规划并定义了各个寄存器的具体功能,设计了功能完善的加/减速控制电路、变频分配电路、倍频分频电路和三个功能各异的计数器电路等,完全实现了S-曲线升降速运动、自动降速点运动、A/B相编码器倍频计数电路等特殊功能.再次,介绍了DSP在运动控制中的作用,合理规划了DSP指令的形成过程,并对DSP软件的具体实现进行了框架性的设计.然后,根据光电隔离原理设计了数字输入/输出电路;结合DAC原理设计了四路模拟输出电路;实现了PCI接口电路的设计;并针对常见的干扰现象,提出了有效的抗干扰措施.最后,利用运动控制卡强大的运动控制功能,并针对激光雕刻行业进行大幅图形扫描时需要实时处理大量的图形数据的特别需要,在板卡第四轴完全实现了激光控制功能,并基于FPGA内部的16KBit块RAM,开辟了大量数据区以便进行大幅图形的实时处理.
上传时间: 2013-06-09
上传用户:youlongjian0
在传统的电力电子电路中,DC/DC变换器通常采用模拟电路实现电压或电流的控制。数字控制与模拟控制相比,有着显著的优点,数字控制可以实现复杂的控制策略,同时大大提高系统的可靠性和灵活性,并易于实现系统的智能化。但目前数字控制基本上限于电力传动领域,DC/DC变换器由于其开关频率较高,一般其外围功能由DSP或微处理器完成,而控制的核心,如PWM发生等大多采用专用控制芯片实现。FPGA由于其快速性、灵活性及保密性等优点,近年来在数字控制领域受到越来越多的关注。基于FPGA的DC/DC变换器是电力电子领域重要的研究方向之一。本文研究了同步Buck变换器的建模、设计及仿真,采用Xinlix的VIRTEX-Ⅱ PRO FPGA开发板实现了Buck变换器的全数字控制。 论文首先从Buck变换器的理论分析入手,根据它的物理特性,研究了该变换器的状态空间平均模型和小信号分析。为了获得高性能的开关电源,提出并分析了混杂模型设计方案,然后进行了控制器设计。并采用MATLAB/SIMULINK建立了同步Buck电路的仿真模型,并进行仿真研究。浮点仿真的运算精度与溢出问题,影响了仿真的精度。为了克服这些不足,作者采用了定点仿真方法,得到了满意的仿真结果。论文还着重论述了开关电源的数字控制器部分,数字控制器一般由三个主要功能模块组成:模数转换器、数字脉宽调制器(Digital PulseWidth Modulation:DPWM)和数字补偿器。文中重点研究了DPWM和数字补偿器,阐述了目前高频数字控制变换器中存在的主要问题,特别是高频状态下DPWM分辨率较低,影响控制精度,甚至引起极限环(Limit Cycling)现象,对DPWM分辨率的提高与系统硬件工作频率之间的矛盾、DPWM分辨率与A/D分辨率之间的关系等问题作了全面深入的分析。论文提出了一种新的提高DPWM分辨率的方法,该方法在不提高系统硬件频率的前提下,采用软件使DPWM的分辨率大大提高。作者还设计了两种数字补偿器,并进行了分析比较,选择了合适的补偿算法,达到了改善系统性能的目的。 设计完成后,作者使用ISE 9.1i软件进行了FPGA实现的前、后仿真,验证了所提出理论及控制算法的正确性。作者完成了Buck电路的硬件制作及基于FPGA的软件设计,采用32MHz的硬件晶振实现了11-bit的DPWM分辨率,开关频率达到1MHz,得到了满意的系统性能,论文最后给出了仿真和实验结果。
上传时间: 2013-07-23
上传用户:kristycreasy
当今的船用导航雷达具有数字化、多功能、高性能、多接口、网络化。同时要求具有高可靠性、高集成度、低成本,信号处理单元的小型化,产品更新周期短。要同时满足上述需求,高集成度的器件应用是必须的。同时开发周期要短,需求软件的可移植性要强,并且是模块化设计,现场可编程门阵列器件(FPGA)已经成为设计首选。 现场可编程门阵列是基于通过可编程互联连接的可配置逻辑块(CLB)矩阵的可编程半导体器件。与为特殊设计而定制的专用集成电路(ASIC)相对,FPGA可以针对所需的应用或功能要求进行编程。虽然具有一次性可编程(OTP)FPGA,但是主要是基于SRAM的,其可随着设计的演化进行重编程。CLB是FPGA内的基本逻辑单元。实际数量和特性会依器件的不同而不同,但是每个CLB都包含一个由4或6个输入、一些选型电路(多路复用器等)和触发器组成的可配置开关矩阵。开关矩阵是高度灵活的,可以进行配置以便处理组合逻辑、移位寄存器或RAM。当今的FPGA已经远远超出了先前版本的基本性能,并且整合了常用功能(如RAM、时钟管理和:DSP)的硬(ASIC型)块。由于具有可编程特性,所以FPGA是众多市场的理想之选。它高集成度,以及用于设计的强大软件平台、IP核、在线升级可满足需求。 本文介绍了基于FPGA实现船用导航雷达数字信号处理的设计,这是一个具体的、已经完成并进行小批量生产的产品,对指导实践具有一定意义。
上传时间: 2013-04-24
上传用户:稀世之宝039
随着社会、科技、经济的不断发展,视频监控技术因其具有直观、方便、信息内容丰富等特点以及广阔的应用范围,一直受到业界的广泛关注。而随着光纤通信技术的迅速发展,利用光纤通信技术实现视频监控系统的设计已成为视频监控技术发展的一个潮流。 本课题探究的数字视频监控系统支持八路视频信号和反向数据信号的实时传输,系统主要分为视频发送端和视频接收端两部分。系统视频发送端主要包括视频处理模块、反向数据处理模块、FPGA主控处理模块、光收发一体模块,其中FPGA主控处理模块实现的主要功能是系统视频信号传输中视频一次复接处理以及反向数据传输中数据接收和线路解码处理等。系统视频接收端与视频发送端的结构是对应的,主要功能模块同样包括视频处理模块、反向数据处理模块、FPGA主控处理模块、光收发一体模块,其中FPGA主控处理模块实现的主要功能是系统视频信号传输中视频二次分接处理以及反向数据传输中数据线路编码和发送处理等。 本论文的研究重点是八路视频信号传输中数字复分接的设计和反向数据信号传输中线路码的编解码设计。论文首先对课题研究的数字视频监控系统的总体设计进行了详细的介绍,给出了各个功能模块电路的具体实现设计方案;其次认真分析了视频监控系统八路视频信号传输中数字复分接的基本原理和实现方式,讨论了系统视频信号传输中数字复分接的设计思想及实现方案,给出了视频信号复分接的程序设计与仿真验证;最后详细阐述了视频监控系统反向数据信号传输中线路码的选择及实现方式,结合数据光纤传输的性能特点,选用CMI码作为反向数据传输的线路码型,讨论了系统反向数据信号传输中CMI编解码的设计思路及实现方案,给出了数据信号CMI编解码的程序设计与仿真验证。 论文的关键部分主要是FPGA主控处理模块的程序设计,利用VHDL硬件描述语言完成视频数字复分接和反向数据CMI编解码的程序设计,并在QuanusII软件开发平台下完成了系统的程序设计与仿真验证。
上传时间: 2013-05-31
上传用户:fudong911
· 摘要: MATLAB是一种建立在向量、数组、矩阵基础上,面向科学和工程计算的高级语言,为科学研究和工程计算提供了一个方便有效的工具.该文简要介绍了B样条和B样条小波的构成,并利用MATLAB语言编写了绘制任意阶B样条和B样条小波图形的程序.
上传时间: 2013-04-24
上传用户:sqq
MSP430系列flash型超低功耗16位单片机MSP430系列单片机在超低功耗和功能集成等方面有明显的特点。该系列单片机自问世以来,颇受用户关注。在2000年该系列单片机又出现了几个FLASH型的成员,它们除了仍然具备适合应用在自动信号采集系统、电池供电便携式装置、超长时间连续工作的设备等领域的特点外,更具有开发方便、可以现场编程等优点。这些技术特点正是应用工程师特别感兴趣的。《MSP430系列FLASH型超低功耗16位单片机》对该系列单片机的FLASH型成员的原理、结构、内部各功能模块及开发方法与工具作详细介绍。MSP430系列FLASH型超低功耗16位单片机 目录 第1章 引 论1.1 MSP430系列单片机1.2 MSP430F11x系列1.3 MSP430F11x1系列1.4 MSP430F13x系列1.5 MSP430F14x系列第2章 结构概述2.1 引 言2.2 CPU2.3 程序存储器2.4 数据存储器2.5 运行控制2.6 外围模块2.7 振荡器与时钟发生器第3章 系统复位、中断及工作模式3.1 系统复位和初始化3.1.1 引 言3.1.2 系统复位后的设备初始化3.2 中断系统结构3.3 MSP430 中断优先级3.3.1 中断操作--复位/NMI3.3.2 中断操作--振荡器失效控制3.4 中断处理 3.4.1 SFR中的中断控制位3.4.2 中断向量地址3.4.3 外部中断3.5 工作模式3.5.1 低功耗模式0、1(LPM0和LPM1)3.5.2 低功耗模式2、3(LPM2和LPM3)3.5.3 低功耗模式4(LPM4)22 3.6 低功耗应用的要点23第4章 存储空间4.1 引 言4.2 存储器中的数据4.3 片内ROM组织4.3.1 ROM 表的处理4.3.2 计算分支跳转和子程序调用4.4 RAM 和外围模块组织4.4.1 RAM4.4.2 外围模块--地址定位4.4.3 外围模块--SFR4.5 FLASH存储器4.5.1 FLASH存储器的组织4.5.2 FALSH存储器的数据结构4.5.3 FLASH存储器的控制寄存器4.5.4 FLASH存储器的安全键值与中断4.5.5 经JTAG接口访问FLASH存储器39第5章 16位CPU5.1 CPU寄存器5.1.1 程序计数器PC5.1.2 系统堆栈指针SP5.1.3 状态寄存器SR5.1.4 常数发生寄存器CG1和CG25.2 寻址模式5.2.1 寄存器模式5.2.2 变址模式5.2.3 符号模式5.2.4 绝对模式5.2.5 间接模式5.2.6 间接增量模式5.2.7 立即模式5.2.8 指令的时钟周期与长度5.3 指令组概述5.3.1 双操作数指令5.3.2 单操作数指令5.3.3 条件跳转5.3.4 模拟指令的简短格式5.3.5 其他指令第6章 硬件乘法器6.1 硬件乘法器6.2 硬件乘法器操作6.2.1 无符号数相乘(16位×16位、16位×8位、8位×16位、8位×8位)6.2.2 有符号数相乘(16位×16位、16位×8位、8位×16位、8位×8位)6.2.3 无符号数乘加(16位×16位、16位×8位、8位×16位、8位×8位)6.2.4 有符号数乘加(16位×16位、16位×8位、8位×16位、8位×8位)6.3 硬件乘法器寄存器6.4 硬件乘法器的软件限制6.4.1 寻址模式6.4.2 中断程序6.4.3 MACS第7章 基础时钟模块7.1 基础时钟模块7.2 LFXT1与XT27.2.1 LFXT1振荡器7.2.2 XT2振荡器7.2.3 振荡器失效检测7.2.4 XT振荡器失效时的DCO7.3 DCO振荡器7.3.1 DCO振荡器的特性7.3.2 DCO调整器7.4 时钟与运行模式7.4.1 由PUC启动7.4.2 基础时钟调整7.4.3 用于低功耗的基础时钟特性7.4.4 选择晶振产生MCLK7.4.5 时钟信号的同步7.5 基础时钟模块控制寄存器7.5.1 DCO时钟频率控制7.5.2 振荡器与时钟控制寄存器7.5.3 SFR控制位第8章 输入输出端口8.1 引 言8.2 端口P1、P28.2.1 P1、P2的控制寄存器8.2.2 P1、P2的原理8.2.3 P1、P2的中断控制功能8.3 端口P3、P4、P5和P68.3.1 端口P3、P4、P5和P6的控制寄存器8.3.2 端口P3、P4、P5和P6的端口逻辑第9章 看门狗定时器WDT9.1 看门狗定时器9.2 WDT寄存器9.3 WDT中断控制功能9.4 WDT操作第10章 16位定时器Timer_A10.1 引 言10.2 Timer_A的操作10.2.1 定时器模式控制10.2.2 时钟源选择和分频10.2.3 定时器启动10.3 定时器模式10.3.1 停止模式10.3.2 增计数模式10.3.3 连续模式10.3.4 增/减计数模式10.4 捕获/比较模块10.4.1 捕获模式10.4.2 比较模式10.5 输出单元10.5.1 输出模式10.5.2 输出控制模块10.5.3 输出举例10.6 Timer_A的寄存器10.6.1 Timer_A控制寄存器TACTL10.6.2 Timer_A寄存器TAR10.6.3 捕获/比较控制寄存器CCTLx10.6.4 Timer_A中断向量寄存器10.7 Timer_A的UART应用 第11章 16位定时器Timer_B11.1 引 言11.2 Timer_B的操作11.2.1 定时器长度11.2.2 定时器模式控制11.2.3 时钟源选择和分频11.2.4 定时器启动11.3 定时器模式11.3.1 停止模式11.3.2 增计数模式11.3.3 连续模式11.3.4 增/减计数模式11.4 捕获/比较模块11.4.1 捕获模式11.4.2 比较模式11.5 输出单元11.5.1 输出模式11.5.2 输出控制模块11.5.3 输出举例11.6 Timer_B的寄存器11.6.1 Timer_B控制寄存器TBCTL11.6.2 Timer_B寄存器TBR11.6.3 捕获/比较控制寄存器CCTLx11.6.4 Timer_B中断向量寄存器第12章 USART通信模块的UART功能12.1 异步模式12.1.1 异步帧格式12.1.2 异步通信的波特率发生器12.1.3 异步通信格式12.1.4 线路空闲多机模式12.1.5 地址位多机通信格式12.2 中断和中断允许12.2.1 USART接收允许12.2.2 USART发送允许12.2.3 USART接收中断操作12.2.4 USART发送中断操作12.3 控制和状态寄存器12.3.1 USART控制寄存器UCTL12.3.2 发送控制寄存器UTCTL12.3.3 接收控制寄存器URCTL12.3.4 波特率选择和调整控制寄存器12.3.5 USART接收数据缓存URXBUF12.3.6 USART发送数据缓存UTXBUF12.4 UART模式,低功耗模式应用特性12.4.1 由UART帧启动接收操作12.4.2 时钟频率的充分利用与UART的波特率12.4.3 多处理机模式对节约MSP430资源的支持12.5 波特率计算 第13章 USART通信模块的SPI功能13.1 USART同步操作13.1.1 SPI模式中的主模式13.1.2 SPI模式中的从模式13.2 中断与控制功能 13.2.1 USART接收/发送允许位及接收操作13.2.2 USART接收/发送允许位及发送操作13.2.3 USART接收中断操作13.2.4 USART发送中断操作13.3 控制与状态寄存器13.3.1 USART控制寄存器13.3.2 发送控制寄存器UTCTL13.3.3 接收控制寄存器URCTL13.3.4 波特率选择和调制控制寄存器13.3.5 USART接收数据缓存URXBUF13.3.6 USART发送数据缓存UTXBUF第14章 比较器Comparator_A14.1 概 述14.2 比较器A原理14.2.1 输入模拟开关14.2.2 输入多路切换14.2.3 比较器14.2.4 输出滤波器14.2.5 参考电平发生器14.2.6 比较器A中断电路14.3 比较器A控制寄存器14.3.1 控制寄存器CACTL114.3.2 控制寄存器CACTL214.3.3 端口禁止寄存器CAPD14.4 比较器A应用14.4.1 模拟信号在数字端口的输入14.4.2 比较器A测量电阻元件14.4.3 两个独立电阻元件的测量系统14.4.4 比较器A检测电流或电压14.4.5 比较器A测量电流或电压14.4.6 测量比较器A的偏压14.4.7 比较器A的偏压补偿14.4.8 增加比较器A的回差第15章 模数转换器ADC1215.1 概 述15.2 ADC12的工作原理及操作15.2.1 ADC内核15.2.2 参考电平15.3 模拟输入与多路切换15.3.1 模拟多路切换15.3.2 输入信号15.3.3 热敏二极管的使用15.4 转换存储15.5 转换模式15.5.1 单通道单次转换模式15.5.2 序列通道单次转换模式15.5.3 单通道重复转换模式15.5.4 序列通道重复转换模式15.5.5 转换模式之间的切换15.5.6 低功耗15.6 转换时钟与转换速度15.7 采 样15.7.1 采样操作15.7.2 采样信号输入选择15.7.3 采样模式15.7.4 MSC位的使用15.7.5 采样时序15.8 ADC12控制寄存器15.8.1 控制寄存器ADC12CTL0和ADC12CTL115.8.2 转换存储寄存器ADC12MEMx15.8.3 控制寄存器ADC12MCTLx15.8.4 中断标志寄存器ADC12IFG.x和中断允许寄存器ADC12IEN.x15.8.5 中断向量寄存器ADC12IV15.9 ADC12接地与降噪第16章 FLASH型芯片的开发16.1 开发系统概述16.1.1 开发技术16.1.2 MSP430系列的开发16.1.3 MSP430F系列的开发16.2 FLASH型的FET开发方法16.2.1 MSP430芯片的JTAG接口16.2.2 FLASH型仿真工具16.3 FLASH型的BOOT ROM16.3.1 标准复位过程和进入BSL过程16.3.2 BSL的UART协议16.3.3 数据格式16.3.4 退出BSL16.3.5 保护口令16.3.6 BSL的内部设置和资源附录A 寻址空间附录B 指令说明B.1 指令汇总B.2 指令格式B.3 不增加ROM开销的模拟指令B.4 指令说明(字母顺序)B.5 用几条指令模拟的宏指令附录C MSP430系列单片机参数表附录D MSP430系列单片机封装形式附录E MSP430系列器件命名
上传时间: 2014-04-28
上传用户:sssnaxie
基于PIC单片机控制的数字视频混合器 介绍了一种利用P IC 单片机中断技术来控制数字视频混合处理芯片, 实现将2 路或多路数字视频信号混合成1 路或多路输出的数字视频混合器的硬件构成和软件设计。通过实际应用表明, 该数字视频混合器操作方式简单灵活、可靠性高, 有较好的市场价值。关键词 P IC 单片机; 数字视频; 视频混合器; 键控本文主要介绍了的基于P IC 单片机控制的数字视频键控混合器, 该混合器具有以下功能: 内含两级串联的键控混合器, 可以在主信号中键入2路附加数字信号, 如各种字幕标识; 可以远程遥控, 也可现场按键控制; 可以随时更新和保存系统配置, 改变系统功能和技术参数; 该系统稳定可靠, 对掉电、死机等异常现象有自复位能力。整个系统主要包括硬件和软件两部分, 硬件包括数字混合部分和单片机控制部分。
上传时间: 2013-10-26
上传用户:haohao
很多不同的厂家生产各种型号的计算机,它们运行完全不同的操作系统,但TCP.IP协议族允许它们互相进行通信。这一点很让人感到吃惊,因为它的作用已远远超出了起初的设想。T C P / I P起源于6 0年代末美国政府资助的一个分组交换网络研究项目,到9 0年代已发展成为计算机之间最常应用的组网形式。它是一个真正的开放系统,因为协议族的定义及其多种实现可以不用花钱或花很少的钱就可以公开地得到。它成为被称作“全球互联网”或“因特网(Internet)”的基础,该广域网(WA N)已包含超过1 0 0万台遍布世界各地的计算机。本章主要对T C P / I P协议族进行概述,其目的是为本书其余章节提供充分的背景知识。 TCP.IP协议 缩略语 ACK (ACKnowledgment) TCP首部中的确认标志 API (Application Programming Interface) 应用编程接口 ARP (Address Resolution Protocol) 地址解析协议 ARPANET(Defense Advanced Research Project Agency NETwork) (美国)国防部远景研究规划局 AS (Autonomous System) 自治系统 ASCII (American Standard Code for Information Interchange) 美国信息交换标准码 ASN.1 (Abstract Syntax Notation One) 抽象语法记法1 BER (Basic Encoding Rule) 基本编码规则 BGP (Border Gateway Protocol) 边界网关协议 BIND (Berkeley Internet Name Domain) 伯克利I n t e r n e t域名 BOOTP (BOOTstrap Protocol) 引导程序协议 BPF (BSD Packet Filter) BSD 分组过滤器 CIDR (Classless InterDomain Routing) 无类型域间选路 CIX (Commercial Internet Exchange) 商业互联网交换 CLNP (ConnectionLess Network Protocol) 无连接网络协议 CRC (Cyclic Redundancy Check) 循环冗余检验 CSLIP (Compressed SLIP) 压缩的S L I P CSMA (Carrier Sense Multiple Access) 载波侦听多路存取 DCE (Data Circuit-terminating Equipment) 数据电路端接设备 DDN (Defense Data Network) 国防数据网 DF (Don’t Fragment) IP首部中的不分片标志 DHCP (Dynamic Host Configuration Protocol) 动态主机配置协议 DLPI (Data Link Provider Interface) 数据链路提供者接口 DNS (Domain Name System) 域名系统 DSAP (Destination Service Access Point) 目的服务访问点 DSLAM (DSL Access Multiplexer) 数字用户线接入复用器 DSSS (Direct Sequence Spread Spectrum) 直接序列扩频 DTS (Distributed Time Service) 分布式时间服务 DVMRP (Distance Vector Multicast Routing Protocol) 距离向量多播选路协议 EBONE (European IP BackbONE) 欧洲I P主干网 EOL (End of Option List) 选项清单结束 EGP (External Gateway Protocol) 外部网关协议 EIA (Electronic Industries Association) 美国电子工业协会 FCS (Frame Check Sequence) 帧检验序列 FDDI (Fiber Distributed Data Interface) 光纤分布式数据接口 FIFO (First In, First Out) 先进先出 FIN (FINish) TCP首部中的结束标志 FQDN (Full Qualified Domain Name) 完全合格的域名 FTP (File Transfer Protocol) 文件传送协议 HDLC (High-level Data Link Control) 高级数据链路控制 HELLO 选路协议 IAB (Internet Architecture Board) Internet体系结构委员会 IANA (Internet Assigned Numbers Authority) Internet号分配机构 ICMP (Internet Control Message Protocol) Internet控制报文协议 IDRP (InterDomain Routing Protocol) 域间选路协议 IEEE (Institute of Electrical and Electronics Engineering) (美国)电气与电子工程师协会 IEN (Internet Experiment Notes) 互联网试验注释 IESG (Internet Engineering Steering Group) Internet工程指导小组 IETF (Internet Engineering Task Force) Internet工程专门小组 IGMP (Internet Group Management Protocol) Internet组管理协议 IGP (Interior Gateway Protocol) 内部网关协议 IMAP (Internet Message Access Protocol) Internet报文存取协议 IP (Internet Protocol) 网际协议 I RTF (Internet Research Task Force) Internet研究专门小组 IS-IS (Intermediate System to Intermediate System Protocol) 中间系统到中间系统协议 ISN (Initial Sequence Number) 初始序号 ISO (International Organization for Standardization) 国际标准化组织 ISOC (Internet SOCiety) Internet协会 LAN (Local Area Network) 局域网 LBX (Low Bandwidth X) 低带宽X LCP (Link Control Protocol) 链路控制协议 LFN (Long Fat Net) 长肥网络 LIFO (Last In, First Out) 后进先出 LLC (Logical Link Control) 逻辑链路控制 LSRR (Loose Source and Record Route) 宽松的源站及记录路由 MBONE (Multicast Backbone On the InterNEt) Internet上的多播主干网 MIB (Management Information Base) 管理信息库 MILNET (MILitary NETwork) 军用网 MIME (Multipurpose Internet Mail Extensions) 通用I n t e r n e t邮件扩充 MSL (Maximum Segment Lifetime) 报文段最大生存时间 MSS (Maximum Segment Size) 最大报文段长度 M TA (Message Transfer Agent) 报文传送代理 MTU (Maximum Transmission Unit) 最大传输单元 NCP (Network Control Protocol) 网络控制协议 NFS (Network File System) 网络文件系统 NIC (Network Information Center) 网络信息中心 NIT (Network Interface Tap) 网络接口栓(S u n公司的一个程序) NNTP (Network News Transfer Protocol) 网络新闻传送协议 NOAO (National Optical Astronomy Observatories) 国家光学天文台 NOP (No Operation) 无操作 NSFNET (National Science Foundation NETwork) 国家科学基金网络 NSI (NASA Science Internet) (美国)国家宇航局I n t e r n e t NTP (Network Time Protocol) 网络时间协议 NVT (Network Virtual Terminal) 网络虚拟终端 OSF (Open Software Foudation) 开放软件基金 OSI (Open Systems Interconnection) 开放系统互连 OSPF (Open Shortest Path First) 开放最短通路优先 PAWS (Protection Against Wrapped Sequence number) 防止回绕的序号 PDU (Protocol Data Unit) 协议数据单元 POSIX (Portable Operating System Interface) 可移植操作系统接口 PPP (Point-to-Point Protocol) 点对点协议 PSH (PuSH) TCP首部中的急迫标志 RARP (Reverse Address Resolution Protocol) 逆地址解析协议 RFC (Request For Comments) Internet的文档,其中的少部分成为标准文档 RIP (Routing Information Protocol) 路由信息协议 RPC (Remote Procedure Call) 远程过程调用 RR (Resource Record) 资源记录 RST (ReSeT) TCP首部中的复位标志 RTO (Retransmission Time Out) 重传超时 RTT (Round-Trip Time) 往返时间 SACK (Selective ACKnowledgment) 有选择的确认 SLIP (Serial Line Internet Protocol) 串行线路I n t e r n e t协议 SMI (Structure of Management Information) 管理信息结构 SMTP (Simple Mail Transfer Protocol) 简单邮件传送协议 SNMP (Simple Network Management Protocol) 简单网络管理协议 SSAP (Source Service Access Point) 源服务访问点 SSRR (Strict Source and Record Route) 严格的源站及记录路由 SWS (Silly Window Syndrome) 糊涂窗口综合症 SYN (SYNchronous) TCP首部中的同步序号标志 TCP (Transmission Control Protocol) 传输控制协议 TFTP (Trivial File Transfer Protocol) 简单文件传送协议 TLI (Transport Layer Interface) 运输层接口 TTL (Ti m e - To-Live) 生存时间或寿命 TUBA (TCP and UDP with Bigger Addresses) 具有更长地址的T C P和U D P Telnet 远程终端协议 UA (User Agent) 用户代理 UDP (User Datagram Protocol) 用户数据报协议 URG (URGent) TCP首部中的紧急指针标志 UTC (Coordinated Universal Time) 协调的统一时间 UUCP (Unix-to-Unix CoPy) Unix到U n i x的复制 WAN (Wide Area Network) 广域网 WWW (World Wide Web) 万维网 XDR (eXternal Data Representation) 外部数据表示 XID (transaction ID) 事务标识符 XTI (X/Open Transport Layer Interface) X/ O p e n运输层接口
上传时间: 2013-11-13
上传用户:tdyoung
本书主要介绍了基于cpld/fpga的数字通信系统的设计原理与建模方法。从通信系统的组成、eda概述及建模的概念开始(第1~2章),围绕数字通信系统的vhdl设计与建模两条主线,讲述了常用基本电路的建模与vhdl编程设计(第3章),详细地介绍了数字通信基带信号的编译码、复接与分接、同步信号提取、数字通信基带和频带收发信系统、伪随机序列与误码检测等的原理、建模与vhdl编程设计方法(第4~9章)。全书主要是基于cpld/fpga芯片和利用vhdl语言实现对数字通信单元及系统的建模与设计。 全书内容新颖,循序渐进,概念清晰,针对性和应用性强,既可作为高等院校通信与信息专业的高年级本科生教材或研究生的参考书,也可供科研人员及工程技术人员参考。
上传时间: 2014-01-03
上传用户:tiantian
剖析Intel IA32 架构下C 语言及CPU 浮点数机制 Version 0.01 哈尔滨工业大学 谢煜波 (email: xieyubo@126.com 网址:http://purec.binghua.com) (QQ:13916830 哈工大紫丁香BBSID:iamxiaohan) 前言 这两天翻看一本C 语言书的时候,发现上面有一段这样写到 例:将同一实型数分别赋值给单精度实型和双精度实型,然后打印输出。 #include <stdio.h> main() { float a double b a = 123456.789e4 b = 123456.789e4 printf(“%f\n%f\n”,a,b) } 运行结果如下:
标签: Version xieyubo Intel email
上传时间: 2013-12-25
上传用户:徐孺