虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

接收端

  • 一种用于手机的无线充电系统的设计

    随着智能手机屏幕越来越大,功能越来越多,耗电量越来越大,手机充电也越来越频繁。杂乱的数据线和频繁的插拔使人们对充电过程感到不胜其烦,不仅如此,频繁的插拔还容易引起手机充电接口的损坏,因此,人们需要一种更加便捷可靠的充电方法。手机无线充电技术是一种依靠空间磁场耦合将供电端的电能传输给手机电池从而对其进行充电的技术,这是一种全新的充电方法,克服了传统手机充电方法的弊端,可以使充电更加灵活、方便、安全。这种新的充电方法具有广阔的发展和应用前景,日前已受到了相关研究机构和企业的高度关注,且已有一些相关产品面市。本文通过对无线充电技术的原理、电路、通信及耦合机构等方面进行研究,设计了一种用于手机的无线充电系统。本文所做的研究工作对无线充电技术的推广和应用有一定的促进作用,能为未来无线充电系统的设计提供一些参考和借鉴本文的主要研究工作有:闸述了无线充电系统的工作原理及系统的基本结构,分析了手机无线充电系统的需求,并提出了系统的主要设计要求:设计了系统的主电路和谐振电路,完成了控制芯片的选型,并阐述了系统的控制方法和流程;为了使接收端可以将其功率需求及充电状态等信息反馈回发射端,以实现更准确的控制,设计了从接收端到发射端的单向通信信号调制电路以及相关的数据包时序、格式和编码方式等,并用 Simulink对信号调制电路进行仿真,以验证信号调制电路的调制效果;为了克服传统的绕线式稠合机构成本高、制作和装配工艺复杂、一致性不好等缺点,减轻耦合机构重量,并提高其可靠性,设计了一种PCB耦合机构:为了验证所设计的手机无线充电系统的性能,搭建了一个实验系统,实验结果表明所设计的系统满足一般的工程要求。关键词:手机无线充电,磁场耦合,单向通信,PCB耦合机构

    标签: 无线充电

    上传时间: 2022-03-30

    上传用户:zhanglei193

  • 一种带金属物体检测的多线圈的无线充电系统

    论文介绍了当前流行的几种无线充电技术,并提出了一种带金属物体检测的多线圈无线充电系统的设计方案该方案采用电磁感应的技术原理,具有成本低、效率高等特点。另外,相比于其他电磁感应技术的无线充电方案,本文方案的特点是低功耗、多线圈及带金属物体检测功能硬件方面,本文提出的无线充电系统采用美国德州仪器公司的BQ500410A及BQ51013B作为发射端电路和接收端电路的主控部分,并辅以MSP430G2101实现低功耗电路为了扩大负载设备的充电面积,发射端电路采用三线圈的方案,自动选择最优的线圈来提供能量传输通道。此外,本文方案还设计了寄生金属物体检测及外来物体检测功能,避免了能量传输通道上存在的金属物体产生的涡流发热对无线充电系统的影响。软件方面,本文采用“反向散播调制技术”进行信号调制,并定义了物理层、数据链路层、逻辑层协议,规范了发射端电路与接收端电路之问数据通信。在传输功率控制方面,本文采用的是离散PID控制算法,并结合动态整流控制算法提高系统的瞬态响应速度。最后,本文测试了上述软硬件设计的主要功能,证实了本文设计方案的可行性关键词:无线充电、电磁感应、低功耗、金属物体检测、多线圈

    标签: 无线充电系统

    上传时间: 2022-04-02

    上传用户:XuVshu

  • 正点原子高速无线调试器用户资料

    1 产品简介1.1 产品特点下载速度快,超越 JLINK V8,接近 JLINK V9采用 2.4G 无线通信,自动跳频支持 1.8V~5V 设备,自动检测支持 1.8V/3.3V/5V 电源输出,上位机设置支持目标板取电/给目标板供电支持 MDK/IAR 编译器,无需驱动,不丢固件支持 Cortex M0/M1/M3/M4/M7 等内核 ARM 芯片支持仿真调试,支持代码下载、支持虚拟串口提供 20P 标准 JTAG 接口、提供 4P 简化 SWD 接口支持 XP/WIN7/WIN8/WIN10 等操作系统尺寸小巧,携带方便1.2 基本参数产品名称 ATK-HSWLDBG 高速无线调试器产品型号 ATK-HSWLDBG支持芯片 ARM Cortex M0/M1/M3/M4/M7 全系列通信方式 USB(免驱)仿真接口 JTAG、SWD支持编译器 MDK、IAR串口速度 10Mbps(max)烧录速度 10M通信距离 ≥10MTX 端工作电压 5V(USB 供电)TX 端工作电流 151mARX 端工作电压 3.3V/5V(USB 或者 JTAG 或者 SWD 供电)RX 端工作电流 132mA@5V工作温度 -40℃~+85℃尺寸 66.5mm*40mm*17mm1.3 产品实物图图 发送端图 接收端接收端接口输出电压示意图,所有标注 GND 的引脚均为地线1.4 接线示意图高速无线调试器发送端,接线图:高速无线调试器接收端,JTAG/SWD 接口供电,接线示意图:高速无线调试器接收端,USB 接口供电,接线示意图:1.5 高速无线调试器工作原理示意图电脑端 高速无线调试器发送端 USB 接口目标 MCU 高速无线调试器接收端 JTAG/SWD 接口目标 MCU 高速无线调试器接收端5V 电源JTAG/SW 接口 USB 接口高速无线调试器JTAG/SW 接口 目标 MCU 高速无线调试器接收端USB 接口 电脑端 高速无线调试器发送端无线模块无线模块2、MDK 配置教程注意:低版本 MDK 对高速无线调试器的支持不完善,推荐 MDK5.23及以上版本。MDK5.23~MDK5.26 对高速 DAP 的支持都有 bug,必须打补丁。参考“mdk 补丁”文件夹下的相关文档解决。SWD 如果接3 线,请查看第 10 章,常见问题 1。要提高速度,参考 4.2 节配置无线参数为大包模式。如果无线通信不稳定,参考常见问题 4。

    标签: 高速无线调试器

    上传时间: 2022-06-04

    上传用户:d1997wayne

  • IP6805U 5W低成本无线充方案

    概述IP6805U 是一款无线充电发射端控制 SoC 芯 片,兼容WPC Qi v1.2.4 最新标准,支持 A11 或 A11a 线圈,支持 5W 充电。IP6805U 通过analog ping 检测到无线接收器,并建立与接收端之间的 通信,则开始功率传输。IP6805U 解码从接收器 发送的通信数据包,然后用 PID 算法来改变振荡频率从而调整线圈上的输出功率。一旦接收器上 的电池充满电时,IP6805U 终止电力传输。IP6805U 片内集成全桥驱动电路和全桥功率 MOS,电压&电流两路 ASK 通讯解调模块;方案集成度高,可显著降低方案尺寸和 BOM 成本。 背夹、无线充电底座 Ÿ 车载无线充电设备

    标签: ip6805u 无线方案

    上传时间: 2022-06-15

    上传用户:

  • 脉冲多普勒雷达信号处理实时仿真算法研究

    脉冲多普勒(PD)雷达是一种广泛被采用的全相参体制的雷达,它利用目标与雷达之间相对运动而产生的多普勒效应进行目标信息提取和处理,具有较高的速度分辨率,可以有效地抑制强地杂波的干扰问题。为了满足实验室开发雷达对抗半实物仿真系统的需求,本论文展开对PD雷达信号处理实时仿真算法的研究。本文首先介绍了PD雷达的工作原理,分析了PD雷达的距离、速度模糊问题,对PD雷达的杂波也做了简单介绍。由于PD雷达信号处理算法研究的需要,本文介绍了PD雷达接收机的组成,详细分析了正交相位检波处理的方法,并对接收端信号的处理过程进行了仿真。基于PD雷达工作原理,本文提出了一种低重频脉冲多普勒雷达信号处理仿真框架,对PD雷达信号处理系统各主要模块的算法以及其功能、原理进行了详细的分析,并运用Mailab对低重复频率PD雷达信号处理进行了仿真。最后,本文基于ADSP-TS201对雷达信号处理算法的实时性进行了分析,在Visual DSP+-开发环境实现了FFT算法和数据求模算法,获得相应的运算指令周期。整个工作对PD雷达信号处理半实物仿真系统的搭建具有重要的意义。

    标签: 脉冲 多普勒雷达信号处理

    上传时间: 2022-06-21

    上传用户:kingwide

  • 硕士论文:基于FPGA的PCIE数据采集卡设计

    广东工业大学硕士学位论文 (工学硕士) 基于FPGA的PCIE数据采集卡设计数据采集处理技术与传感器技术、信号处理技术和PC机技术共同构成检测 技术的基础,其中数据采集处理技术作为实现自动化检测的前提,在整个数字化 系统中处于尤为重要的地位。对于核磁共振这样复杂的系统设备,实现自动化测 试显得尤为必要,又因为核磁共振成像系统的特殊性,对数据的采集有特殊要求, 需要根据各种脉冲序列的不同要求设置采样点数和采样间隔,根据待采信号的不 同带宽来设置采样率,将系统成像的数据采集下来进行处理,最后重建图像和显 示。因此本文基于现有的采集技术开发专门应用于核磁共振成像的数据采集卡。 该采集卡从软件与硬件两个方面对基于FPGA的PCIE数据采集卡进行了研 究,并完成了实物设计。软件方面以FPGA为核心芯片完成数据采集卡的接口控 制以及数据处理。通过Altera的GXB IP核对数据进行捕捉,同时根据实际需要 设计了传输协议,由数据处理模块将捕捉到的数据通过CIC滤波器进行抽取滤 波,然后将信号存入DDR2 SDRAM存储芯片中。在传输接口设计上采用PCIE 总线接口的数据传输模式,并利用FPGA的IP核资源完成接口的逻辑控制。 硬件部分分为FPGA外围配置电路、DDR2接口电路、PCIE接口电路等模 块。该采集卡硬件系统由Flash对FPGA进行初始化,通过FPGA配置PCIE总 线,根据FPGA中PCIE通道引脚的要求进行布局布线。DDR2接口电路模块依 据DDR2芯片驱动和接收端的电平标准、端接方式确定DDR2与FPGA之间通 信的各信号走线。针对各个模块接口电路的特点分别进行眼图测试,分析了板卡 的通信质量,对整个原理图布局进行了设计优化。 通过测试,该数据采集卡实现了通过CPLD对FPGA进行加载,并在FPGA 内部实现了抽取滤波等高速数字信号处理,各种接IsI和控制逻辑以及通过大容量 的DDR2 SDRAM缓存各种数据处理结果正确。经系统成像,该采集卡采集下来 的数字信息可通过图像重建准确成像,为核磁共振成像系统的工程实现打下了良 好的成像基础。 

    标签: 核磁共振 信号处理 FPGA PCIE DDR2

    上传时间: 2022-06-21

    上传用户:fliang

  • VHDL的串行同步通信SPI设计.

    这是一个衡量通信速度的参数。它表示每秒钟传送的bit的个数。例如300波特表示每秒钟发送300个bit,当我们提到时钟周期时,我们就是指波特率例如如果协议需要4800波特率,那么时钟是4800Hz,这意味着串口通信在数据线上的采样率为4800Hz,通常电话线的波特率为14400,28800和36600,波特率可以远远大于这些值,但是波特率和距离成反比。串行口每秒发送或接收数据的码元数为传码,单位为波特,也叫波特率,若发送或接收一位数据所需时间为T,则波特率为1/T,相应的发送或接收时钟为1/T Hz。发送和接收设备的波特率应一致。位同步是实现收发双方的码元同步,由数据传输系统的同步控制电路实现。发送端由发送时钟的定时脉冲对数据序列取样再生,接收端由接收时钟的定时脉冲对接收数据序列取样判断,恢复原来的数据序列。因此,接收时钟和发送时钟必须同频同相,这是由接收端的定时提取和锁相环电路实现的。传码率与位同步必须同时满足。否则,接收设备接收不到有效信息

    标签: vhdl 串行同步通信 spi

    上传时间: 2022-06-22

    上传用户:

  • Socket开发之通讯协议及处理

    在Socket应用开发中,还有一个话题是讨论的比较多的,那就是数据接收后如何处理的问题。这也是一个令刚接触Socket开发的人很头疼的问题。因为Socket的TCP通讯中有一个“粘包”的现象,既:大多数时候发送端多次发送的小数据包会被连在一起被接收端同时接收到,多个小包被组成一个大包被接收。有时候一个大数据包又会被拆成多个小数据包发送。这样就存在一个将数据包拆分和重新组合的问题。那么如何去处理这个问题呢?这就是我今天要讲的通讯协议。所谓的协议就是通讯双方协商并制定好要传送的数据的结构与格式。并按制定好的格式去组合与分析数据。从而使数据得以被准确的理解和处理。那么我们如何去制定通讯协议呢?很简单,就是指定数据中各个字节所代表的意义。比如说:第一位代表封包头,第二位代表封类型,第三、四位代表封包的数据长度。然后后面是实际的数据内容。

    标签: socket 通讯协议

    上传时间: 2022-06-23

    上传用户:默默

  • Duanxx的模块使用:无线充电

    一无线模块概述关于无线充电的原理和设计方案网上有很多,这里就不再赘述,此处主要记录一下从淘宝上买来的无线模块的测试结果。我从淘宝上买来的无线模块如下:其主要特性如下:输入电压:5~12V最大负载电流:1.3A接收输出电压电流:5V/1.5A,12V/700mA发射线圈尺寸:外径43mm,厚度2.3mm发射模块尺寸:18mm*8.5mm*15mm接收模块尺寸:10mm*25mm*3mm接收线圈尺寸:外径43mm,厚度1.2mm接收最佳距离:3~6mm二芯片资料从网上并没有搜到比较靠谱的芯片资料,唯一有的就是XKT-408和XKT-510的使用手册。准确的说,淘宝上卖的都是XKT系列的无线充电解决方案。发射模块我直接使用了上图中的发射模块,并未做任何更改。这里我主要关心的是接收端芯片:T-3168其规格说明书下载链接:

    标签: 无线充电

    上传时间: 2022-06-25

    上传用户:trh505

  • 7.5W/10W/15W 多线圈无线充电发射控制器IP6809 datasheet

    兼容WPC v1.2.4协议的7.5W/10W/15W多线圈无线充电发射控制器--IP6809一 概述IP6809是一款无线充电发射端控制SoC芯片,兼容WPC Qi v1.2.4最新标准,支持3线圈无线充电应用,支持A28线圈、MP-A8线圈,支持客户线圈定制方案,支持5W、苹果 7.5W、三星10W、15W充电。IP6809通过analog ping检测到无线接收器,并建立与接收端之间的通信,则开始功率传输。IP6809通过切换不同的工作线圈执行analogping并检测信号强度的方式确定接收机摆放位置,并选择信号最强的线圈执行充电动作。IP6809 解码从接收器发送的通信数据包,然后用PID算法来改变振荡频率从而调整线圈上的输出功率。一旦接收器上的电池充满电时,IP6809终止电力传输.片内集成全桥驱动电路和电压&电流两路ASK通讯解调模块,集成度高,降低方案尺寸和BOM成本. 二 特性兼容WPC v1.2.4标准支持5~15W多种应用单独5W应用快充充电器输入5~10W应用5V充电器输入5~10W升压应用9V~15V充电器输入5~10W降压应用12~19V充电器输入15W应用支持多线圈支持2~3个线圈支持自动检测接收线圈摆放位置通过特定IO的电平状态判断是2/3线圈输入耐压高达25V集成NMOS全桥驱动集成内部电压/电流解调支持FOD异物检测功能--高灵敏静态异物检测--支持动态FOD检测--FOD参数可调低静态功耗和高效率静态电流4mA实测系统充电效率高达79%兼容NPO电容和CBB电容支持成品固件在线升级针对供电能力不足的USB电源有动态功率调整功能(DPM)支持低至5V 500mA的充电器输入过压,过流保护功能支持PD3.0输入请求支持NTC用于系统各状态指示的3路LED支持客户灯显定制封装6mm×6mm 0.5pitch QFN40三 应用背夹、无线充电底座车载无线充电设备

    标签: 无线充电

    上传时间: 2022-06-25

    上传用户: