虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

手持<b>激光测距仪</b>

  • 四轴同款传感器方案设计ICM20602+AK8975+SPL06-001

     四轴起飞时,发出触发信号使导航模块开始工作,同时读取ICM20602的加速度计、陀螺仪数据,对数据卡尔曼滤波后姿态解算,对角度与角速度采取串级PID调节。控制系统算法设计主要有ICM20602滤波算法,姿态解算算法、串级PID控制算法和定高部分控制算法。碍于篇幅所限,下面介绍最重要的串级PID控制算法和定高部分控制算法。地理坐标系中重力的水平分量为零,仅用三轴陀螺仪和三轴加速度计无法计算出航向角,由于巡线机器人保持稳定飞行只需要横滚角(roll)和俯仰角(pitch),所以四元数转换成欧拉角。定高控制算法采用的是增量式PID控制,定高控制的输出最后与姿态控制的输出叠加到四个电机的控制中。数据滤波使用的是低通滤波,采用近三次的平均值。为了防止姿态对激光测距的影响及减小高度控制对姿态控制的干扰使用欧拉角来校正高度值,即Hight=(float)Hight*(cos(roll)* cos(pitch))。将四元数转换后的欧拉角与陀螺仪测出来的角速度进行串级PID控制,其中欧拉角作为外环,角速度作为内环。外环的PID以及内环的PD设定值为测试数据值。由于内环的角速度控制不需要无静差,所以内环采用PD控制,为防止测量的误差造成较大影响,外环积分需要限幅。

    标签: 传感器

    上传时间: 2022-06-24

    上传用户:默默

  • VIP专区-单片机源代码精选合集系列(52)

    eeworm.com VIP专区 单片机源码系列 51资源包含以下内容:1. Atmel 90系列AVR单片机烧录器.zip2. 可在线系统编程的智能键盘和数码管显示系统.pdf3. 调Q Nd∶YAG环形腔外腔倍频技术研究.pdf4. 基于C8051F930的管道温度压力远程监测系统.pdf5. PCF8578 LCD图形点阵液晶驱动器芯片简介及封装库.zip6. 单片机控制的半导体激光器稳光强器的研究.pdf7. PCF8563 低价时钟芯片数据手册及封装库.zip8. MAX7456在可视倒车雷达中的应用.pdf9. 基于AVR单片机的船舶气象仪测试系统的设计.pdf10. PCF8562 低复用率的通用LCD驱动器数据手册及封装库.zip11. 基于IC卡的新型供暖计费系统设计.pdf12. 基于C8051F340控制的TD直放站控制方案设计.pdf13. 基于单片机AT89C51的MP3播放系统的设计方案.pdf14. PCF2116系列LCD驱动器芯片简介及封装库.zip15. PIC单片机在汽车电动车窗控制器中的应用.pdf16. CAT9555 I2C IO扩展芯片产品数据手册及封装库.zip17. 基于MSP430单片机和DS18B20的数字温度计.pdf18. 基于OMAP1510的mp3播放器设计.rar19. CAT9554 I2C总线扩展器产品数据手册.pdf20. 基于双ATmega128的安检力学试验机设计.pdf21. 单片机间双工串行通讯.rar22. CAT93C46 器件数据手册.pdf23. 基于自编程功能的MCU Bootloader设计.pdf24. DP-51PROD单片机教学实验仪简介.pdf25. 激光扫描车身坐标测量数据采集系统的设计.pdf26. 基于MSP430的自控式骨矫形器的设计与实现.pdf27. 基于MSP430单片机的电子汽车限速器的研究.pdf28. 基于BF561的智能视频监控仪的设计.pdf29. 基于555定时器的双音门铃电路设计.doc30. TKScope完美支持AVR内核的仿真.pdf31. AT89C51与ISD4003组成的语音报价系统.pdf32. EDS-1210 嵌入式以太网交换机模块数据手册.pdf33. PIC烧录器.doc34. 删繁就简-单片机入门到精通.pdf35. 基于AT89S51系列单片机实时语音播报的超声波测距仪设计.pdf36. 基于AT89S52 的水温控制系统的设计.pdf37. 基于单片机和串行EEPROM的智能密码锁的设计与制作.doc38. 单片机模糊控制在电加热炉温度控制系统中的应用.pdf39. 基于单片机的语音电子钟设计.doc40. 单片机内部密码破解的常用方法.doc41. 基于单片机的信号产生电路的设计.doc42. 在单片机上实现USB移动存储.doc43. 基于单片机的机械手控制系统研究.pdf44. 基于单片机SPCE061A的多功能数字钟设计.doc45. 基于51单片机电子密码锁的Proteus仿真设计.pdf46. 单片机人机交互系统的C51编程.pdf47. Keil和Proteus在单片机实验教学中的应用.pdf48. 基于ATMEGA128单片机的节水灌溉系统设计.pdf49. 超齐全单片机工具集.rar50. 基于msp430单片机的便携式数字倾角仪的研制.rar51. keilA51原版教程.pdf52. STM32F10x开发调试工具一览.pdf53. X波段双频高功率返波振荡器的数值研究.pdf54. AVR单片机实用程序设计.doc55. STM32F10xxx+调试应用示例.rar56. 基于单片机的多I/O节点开发设计.pdf57. 74LS138译码器应用--基于8051+Proteus仿真.rar58. STM32F10xxx+USART应用实例.rar59. 深入浅出MFC简体中文版.doc60. 可以调控的走马灯(基于8051+Proteus仿真).rar61. STM32F10xxx+TIM应用实例.rar62. PIC单片机中档资料说明.pdf63. STM32 PCB封装库.rar64. STM32F10xxx+TIM1+应用实例.rar65. 用Verilog实现8255芯片功能.rar66. 单片机软件系统设计教程.pdf67. STM32F10xxx+SPI+应用示例.rar68. C8051F单片机应用解析.rar69. STM32F10xxx+GPIO应用示例.rar70. 精通VerilogHDL:IC设计核心技术实例详解.rar71. 基于STC89C52单片机控制的超声波汽车防撞系统.pdf72. STM32F10xxx+DMA+控制器应用实例.rar73. STM32F10xxx+IIC+应用实例.rar74. STM32F10xxx+CAN应用实例.rar75. 基于STC89C51的鼠标改装PPT遥控.zip76. STM32F10xxx+ADC应用实例.rar77. 双MSP430单片机结构数字涡街流量计.doc78. STC89C51定时器2的应用.rar79. 基于AT89C51单片机控制的遥控器的设计.pdf80. 单片机实现的嵌入式因特网终端设计.doc81. 单片机作息时间控制.doc82. 基于VB与单片机的温度测控系统设计.doc83. STC单片机程序下载器设计.pdf84. 基于MSP430单片机的SD卡读写.pdf85. 基于PIC16F877A的车内有害气体检测控制系统设计.pdf86. F2812的片内资源、存储器映射以及CMD文件的编写.pdf87. 基于PIC16F877A的方波信号发生器电路设计.pdf88. 单片脉冲计数.doc89. 单片微机的定时器计数器原理及应用.ppt90. 基于ISP1581的USB 数据采集系统的实现.pdf91. 基于单片机的涡轮流量计显示仪表的设计.pdf92. STC单片机开发板操作手册.doc93. 基于TMS320F2812的智能数字调节器.pdf94. 基于PN532的接触式和非接触式读卡器设计.pdf95. 基于C8051F410的光电式引张线仪设计.pdf96. 利用单片机控制交通灯与倒记时显示.pdf97. ISD4004语音芯片的内部存储信息管理.pdf98. 具有模拟信号处理能力单片机简评--单片机选择和使用(简介篇).pdf99. 基于AVR单片机的自动对靶喷雾控制系统设计.pdf100. ds18b20程序.doc

    标签: 数字电子技术 电子教案

    上传时间: 2013-04-15

    上传用户:eeworm

  • 基于ARM的汽车防撞系统平台的研究

    随着汽车技术的不断发展,越来越多的的人拥有了自己的汽车,基于汽车安全的汽车辅助系统也日益受到了人们的重视。汽车辅助安全系统可以对汽车驾驶过程中出现的紧急情况进行报警和控制。可以预见,基于汽车安全的辅助驾驶系统有着良好的发展前景和广阔的应用空间。 本文通过将图像检测技术和激光测距技术相结合,应用ARM+DSP的双核架构,设计出一款高性能的汽车主动安全系统。系统通过图像识别技术对行车路况进行监控,并通过激光测距技术对前方车距进行检测。当自车与前方的车距小于系统计算出来的安全车距,并有可能发生碰撞时,系统将予以报警,提醒驾驶员注意减速或制动,从而达到有效预防追尾碰撞事故发生的目的。本文的主要内容包括以下几个方面: 1)完成系统的整体硬件设计工作。针对汽车安全系统对准确性和实时性的要求,系统设计采用S3C2410作为系统的主控制器、TMS320DM6437作为系统的协处理器。双核架构的应用将大幅度提升系统在图像检测方面的运算能力。 2)为提高系统与各子模块的通信效率,系统采用CAN总线作为主控制器与其他子模块的主要通信总线。并开发出相应的驱动软件。 3)系统采用嵌入式Linux操作系统,应用Linux强大的事务管理能力,来提高系统的处理能力和响应速度。 4)通过对汽车碰撞过程的分析,研究开发出一套汽车防撞决策算法,对驾驶员预警和对车辆进行辅助制动,保障驾驶人员的安全。 最后,论文在总结全文工作的基础上,指出了系统的不足之处和进一步研究的工作方向。 总之,在汽车安全技术在国内刚刚起步的今天,对该系统的研究对于中国自主的汽车主动安全系统无论是在理论研究还是实际应用上都具有一定的价值。

    标签: ARM 汽车防撞系统

    上传时间: 2013-07-08

    上传用户:y307115118

  • 超声波测距仪的设计方案

    超声波

    标签: 超声波测距 仪的设计 方案

    上传时间: 2013-11-04

    上传用户:lvchengogo

  • MSP430系列flash型超低功耗16位单片机

    MSP430系列flash型超低功耗16位单片机MSP430系列单片机在超低功耗和功能集成等方面有明显的特点。该系列单片机自问世以来,颇受用户关注。在2000年该系列单片机又出现了几个FLASH型的成员,它们除了仍然具备适合应用在自动信号采集系统、电池供电便携式装置、超长时间连续工作的设备等领域的特点外,更具有开发方便、可以现场编程等优点。这些技术特点正是应用工程师特别感兴趣的。《MSP430系列FLASH型超低功耗16位单片机》对该系列单片机的FLASH型成员的原理、结构、内部各功能模块及开发方法与工具作详细介绍。MSP430系列FLASH型超低功耗16位单片机 目录  第1章 引 论1.1 MSP430系列单片机1.2 MSP430F11x系列1.3 MSP430F11x1系列1.4 MSP430F13x系列1.5 MSP430F14x系列第2章 结构概述2.1 引 言2.2 CPU2.3 程序存储器2.4 数据存储器2.5 运行控制2.6 外围模块2.7 振荡器与时钟发生器第3章 系统复位、中断及工作模式3.1 系统复位和初始化3.1.1 引 言3.1.2 系统复位后的设备初始化3.2 中断系统结构3.3 MSP430 中断优先级3.3.1 中断操作--复位/NMI3.3.2 中断操作--振荡器失效控制3.4 中断处理 3.4.1 SFR中的中断控制位3.4.2 中断向量地址3.4.3 外部中断3.5 工作模式3.5.1 低功耗模式0、1(LPM0和LPM1)3.5.2 低功耗模式2、3(LPM2和LPM3)3.5.3 低功耗模式4(LPM4)22 3.6 低功耗应用的要点23第4章 存储空间4.1 引 言4.2 存储器中的数据4.3 片内ROM组织4.3.1 ROM 表的处理4.3.2 计算分支跳转和子程序调用4.4 RAM 和外围模块组织4.4.1 RAM4.4.2 外围模块--地址定位4.4.3 外围模块--SFR4.5 FLASH存储器4.5.1 FLASH存储器的组织4.5.2 FALSH存储器的数据结构4.5.3 FLASH存储器的控制寄存器4.5.4 FLASH存储器的安全键值与中断4.5.5 经JTAG接口访问FLASH存储器39第5章 16位CPU5.1 CPU寄存器5.1.1 程序计数器PC5.1.2 系统堆栈指针SP5.1.3 状态寄存器SR5.1.4 常数发生寄存器CG1和CG25.2 寻址模式5.2.1 寄存器模式5.2.2 变址模式5.2.3 符号模式5.2.4 绝对模式5.2.5 间接模式5.2.6 间接增量模式5.2.7 立即模式5.2.8 指令的时钟周期与长度5.3 指令组概述5.3.1 双操作数指令5.3.2 单操作数指令5.3.3 条件跳转5.3.4 模拟指令的简短格式5.3.5 其他指令第6章 硬件乘法器6.1 硬件乘法器6.2 硬件乘法器操作6.2.1 无符号数相乘(16位×16位、16位×8位、8位×16位、8位×8位)6.2.2 有符号数相乘(16位×16位、16位×8位、8位×16位、8位×8位)6.2.3 无符号数乘加(16位×16位、16位×8位、8位×16位、8位×8位)6.2.4 有符号数乘加(16位×16位、16位×8位、8位×16位、8位×8位)6.3 硬件乘法器寄存器6.4 硬件乘法器的软件限制6.4.1 寻址模式6.4.2 中断程序6.4.3 MACS第7章 基础时钟模块7.1 基础时钟模块7.2 LFXT1与XT27.2.1 LFXT1振荡器7.2.2 XT2振荡器7.2.3 振荡器失效检测7.2.4 XT振荡器失效时的DCO7.3 DCO振荡器7.3.1 DCO振荡器的特性7.3.2 DCO调整器7.4 时钟与运行模式7.4.1 由PUC启动7.4.2 基础时钟调整7.4.3 用于低功耗的基础时钟特性7.4.4 选择晶振产生MCLK7.4.5 时钟信号的同步7.5 基础时钟模块控制寄存器7.5.1 DCO时钟频率控制7.5.2 振荡器与时钟控制寄存器7.5.3 SFR控制位第8章 输入输出端口8.1 引 言8.2 端口P1、P28.2.1 P1、P2的控制寄存器8.2.2 P1、P2的原理8.2.3 P1、P2的中断控制功能8.3 端口P3、P4、P5和P68.3.1 端口P3、P4、P5和P6的控制寄存器8.3.2 端口P3、P4、P5和P6的端口逻辑第9章 看门狗定时器WDT9.1 看门狗定时器9.2 WDT寄存器9.3 WDT中断控制功能9.4 WDT操作第10章 16位定时器Timer_A10.1 引 言10.2 Timer_A的操作10.2.1 定时器模式控制10.2.2 时钟源选择和分频10.2.3 定时器启动10.3 定时器模式10.3.1 停止模式10.3.2 增计数模式10.3.3 连续模式10.3.4 增/减计数模式10.4 捕获/比较模块10.4.1 捕获模式10.4.2 比较模式10.5 输出单元10.5.1 输出模式10.5.2 输出控制模块10.5.3 输出举例10.6 Timer_A的寄存器10.6.1 Timer_A控制寄存器TACTL10.6.2 Timer_A寄存器TAR10.6.3 捕获/比较控制寄存器CCTLx10.6.4 Timer_A中断向量寄存器10.7 Timer_A的UART应用 第11章 16位定时器Timer_B11.1 引 言11.2 Timer_B的操作11.2.1 定时器长度11.2.2 定时器模式控制11.2.3 时钟源选择和分频11.2.4 定时器启动11.3 定时器模式11.3.1 停止模式11.3.2 增计数模式11.3.3 连续模式11.3.4 增/减计数模式11.4 捕获/比较模块11.4.1 捕获模式11.4.2 比较模式11.5 输出单元11.5.1 输出模式11.5.2 输出控制模块11.5.3 输出举例11.6 Timer_B的寄存器11.6.1 Timer_B控制寄存器TBCTL11.6.2 Timer_B寄存器TBR11.6.3 捕获/比较控制寄存器CCTLx11.6.4 Timer_B中断向量寄存器第12章 USART通信模块的UART功能12.1 异步模式12.1.1 异步帧格式12.1.2 异步通信的波特率发生器12.1.3 异步通信格式12.1.4 线路空闲多机模式12.1.5 地址位多机通信格式12.2 中断和中断允许12.2.1 USART接收允许12.2.2 USART发送允许12.2.3 USART接收中断操作12.2.4 USART发送中断操作12.3 控制和状态寄存器12.3.1 USART控制寄存器UCTL12.3.2 发送控制寄存器UTCTL12.3.3 接收控制寄存器URCTL12.3.4 波特率选择和调整控制寄存器12.3.5 USART接收数据缓存URXBUF12.3.6 USART发送数据缓存UTXBUF12.4 UART模式,低功耗模式应用特性12.4.1 由UART帧启动接收操作12.4.2 时钟频率的充分利用与UART的波特率12.4.3 多处理机模式对节约MSP430资源的支持12.5 波特率计算 第13章 USART通信模块的SPI功能13.1 USART同步操作13.1.1 SPI模式中的主模式13.1.2 SPI模式中的从模式13.2 中断与控制功能 13.2.1 USART接收/发送允许位及接收操作13.2.2 USART接收/发送允许位及发送操作13.2.3 USART接收中断操作13.2.4 USART发送中断操作13.3 控制与状态寄存器13.3.1 USART控制寄存器13.3.2 发送控制寄存器UTCTL13.3.3 接收控制寄存器URCTL13.3.4 波特率选择和调制控制寄存器13.3.5 USART接收数据缓存URXBUF13.3.6 USART发送数据缓存UTXBUF第14章 比较器Comparator_A14.1 概 述14.2 比较器A原理14.2.1 输入模拟开关14.2.2 输入多路切换14.2.3 比较器14.2.4 输出滤波器14.2.5 参考电平发生器14.2.6 比较器A中断电路14.3 比较器A控制寄存器14.3.1 控制寄存器CACTL114.3.2 控制寄存器CACTL214.3.3 端口禁止寄存器CAPD14.4 比较器A应用14.4.1 模拟信号在数字端口的输入14.4.2 比较器A测量电阻元件14.4.3 两个独立电阻元件的测量系统14.4.4 比较器A检测电流或电压14.4.5 比较器A测量电流或电压14.4.6 测量比较器A的偏压14.4.7 比较器A的偏压补偿14.4.8 增加比较器A的回差第15章 模数转换器ADC1215.1 概 述15.2 ADC12的工作原理及操作15.2.1 ADC内核15.2.2 参考电平15.3 模拟输入与多路切换15.3.1 模拟多路切换15.3.2 输入信号15.3.3 热敏二极管的使用15.4 转换存储15.5 转换模式15.5.1 单通道单次转换模式15.5.2 序列通道单次转换模式15.5.3 单通道重复转换模式15.5.4 序列通道重复转换模式15.5.5 转换模式之间的切换15.5.6 低功耗15.6 转换时钟与转换速度15.7 采 样15.7.1 采样操作15.7.2 采样信号输入选择15.7.3 采样模式15.7.4 MSC位的使用15.7.5 采样时序15.8 ADC12控制寄存器15.8.1 控制寄存器ADC12CTL0和ADC12CTL115.8.2 转换存储寄存器ADC12MEMx15.8.3 控制寄存器ADC12MCTLx15.8.4 中断标志寄存器ADC12IFG.x和中断允许寄存器ADC12IEN.x15.8.5 中断向量寄存器ADC12IV15.9 ADC12接地与降噪第16章 FLASH型芯片的开发16.1 开发系统概述16.1.1 开发技术16.1.2 MSP430系列的开发16.1.3 MSP430F系列的开发16.2 FLASH型的FET开发方法16.2.1 MSP430芯片的JTAG接口16.2.2 FLASH型仿真工具16.3 FLASH型的BOOT ROM16.3.1 标准复位过程和进入BSL过程16.3.2 BSL的UART协议16.3.3 数据格式16.3.4 退出BSL16.3.5 保护口令16.3.6 BSL的内部设置和资源附录A 寻址空间附录B 指令说明B.1 指令汇总B.2 指令格式B.3 不增加ROM开销的模拟指令B.4 指令说明(字母顺序)B.5 用几条指令模拟的宏指令附录C MSP430系列单片机参数表附录D MSP430系列单片机封装形式附录E MSP430系列器件命名

    标签: flash MSP 430 超低功耗

    上传时间: 2014-04-28

    上传用户:sssnaxie

  • DAC7714在嵌入式激光跟踪仪中的应用

    阐述了在嵌入式Linux 环境下该芯片驱动程序开发过程,说明了该驱动程序与测试程序及内核的之间关系。通过驱动程序、测试程序代码的讲解,归纳出嵌入式驱动程序开发的共性及具体开发流程,为嵌入式开发打下基础。

    标签: 7714 DAC 嵌入式 中的应用

    上传时间: 2013-12-28

    上传用户:wyiman

  • 利用横向递归算法解决数据组合的问题

    利用横向递归算法解决数据组合的问题, 比如数组为a, 长度为len, 横向递归 B display(a,len) b是二维数组,a是一维数组

    标签: 递归 算法 数据组合

    上传时间: 2015-03-21

    上传用户:tb_6877751

  • 一个比较简单的算法程序。输入一些数

    一个比较简单的算法程序。输入一些数,计算后按照矩阵的形式输出。设了三个数组a[],b[],c[]。分别实现c[]=a[]+b[],c[]=a[]-b[],c[]=a[]*b[]。

    标签: 比较 算法 程序 输入

    上传时间: 2015-03-23

    上传用户:qilin

  • C++完美演绎 经典算法 如 /* 头文件:my_Include.h */ #include <stdio.h> /* 展开C语言的内建函数指令 */ #define PI 3.141

    C++完美演绎 经典算法 如 /* 头文件:my_Include.h */ #include <stdio.h> /* 展开C语言的内建函数指令 */ #define PI 3.1415926 /* 宏常量,在稍后章节再详解 */ #define circle(radius) (PI*radius*radius) /* 宏函数,圆的面积 */ /* 将比较数值大小的函数写在自编include文件内 */ int show_big_or_small (int a,int b,int c) { int tmp if (a>b) { tmp = a a = b b = tmp } if (b>c) { tmp = b b = c c = tmp } if (a>b) { tmp = a a = b b = tmp } printf("由小至大排序之后的结果:%d %d %d\n", a, b, c) } 程序执行结果: 由小至大排序之后的结果:1 2 3 可将内建函数的include文件展开在自编的include文件中 圆圈的面积是=201.0619264

    标签: my_Include include define 3.141

    上传时间: 2014-01-17

    上传用户:epson850

  • 如果整数A的全部因子(包括1

    如果整数A的全部因子(包括1,不包括A本身)之和等于B;且整数B的全部因子(包括1,不包括B本身)之和等于A,则将整数A和B称为亲密数。求3000以内的全部亲密数。 *题目分析与算法设计 按照亲密数定义,要判断数a是否有亲密数,只要计算出a的全部因子的累加和为b,再计算b的全部因子的累加和为n,若n等于a则可判定a和b是亲密数。计算数a的各因子的算法: 用a依次对i(i=1~a/2)进行模运算,若模运算结果等于0,则i为a的一个因子;否则i就不是a的因子。 *

    标签: 整数

    上传时间: 2015-04-24

    上传用户:金宜