基于Joint+HOG特征复杂场景下的头肩检测
头肩的定位检测采用了Haar特征和HOG特征的层级分类方法,并根据头肩的对称性特点,提出了一种称为Joint HOG的组合型特征。通过Haar分类器滤除大部分负样本后,接着用HOG进行精细的验证从而得到头肩目标框。实验表明,本文的方法取得了80%~90%的准确率,并且完全可以用于实时处理。 ...
头肩的定位检测采用了Haar特征和HOG特征的层级分类方法,并根据头肩的对称性特点,提出了一种称为Joint HOG的组合型特征。通过Haar分类器滤除大部分负样本后,接着用HOG进行精细的验证从而得到头肩目标框。实验表明,本文的方法取得了80%~90%的准确率,并且完全可以用于实时处理。 ...
该软件用于研究周期信号的混沌检测,通过Duffing方程,检测极微弱信号,非常有用。...
灰度空间共现矩阵(SGLD)是著名的提取目标纹理的特征,已经成功地应用于人脸检测等计算机视觉中。大家可研究此MAtlab代码,在实用中转化为C代码使用。...
机动目标的跟踪问题一直是人们研究的重点,实现机动目标精确跟踪,首要解决的问题就是使所建立的目标运动模型与实际的目标运动模型匹配。目前常用的有多模型(MM),交互式多模型(IMM),切换模型等。多模型方法就是对一组具有不同机动模型分别进行Kalman滤波,最终的参数估计是各滤波器估计值的加权和;在多模...
从人流统计的实际工程出发,实现了基于计算机视觉的人体运动检测及跟踪系统,采用“差影法”滤掉静止帧,使用自适应的一阶递归滤波及帧差法提取运动区域,并通过数学形态滤波的开运算和闭运算改善运动区域提取效果。实验结果证明本运动跟踪方案处理简单高效 、抗噪能力强,可以完成复杂背景下运动目标的实时性检测与跟踪...