虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

弱磁<b>控制</b>

  • 炸弹超人游戏c语言简板

    炸弹超人游戏c语言简板 ,两个人碗的,A控制WASD空格,B控制光标键和回车 命数,关的风格自己在文件头自己搞定;可以吃的道具由种分别加威力和雷数(最多8个)--简单的16色游戏。

    标签: c语言

    上传时间: 2016-04-27

    上传用户:lhw888

  • 异步电机驱动程序

    异步电机驱动程序,采用磁场定向控制技术(foc)以及直接转矩控制技术(dtc),并且还有弱磁升速程序

    标签: 异步电机 驱动程序

    上传时间: 2017-05-09

    上传用户:yy541071797

  • 本代码为编码开关代码

    本代码为编码开关代码,编码开关也就是数字音响中的 360度旋转的数字音量以及显示器上用的(单键飞梭开 关)等类似鼠标滚轮的手动计数输入设备。 我使用的编码开关为5个引脚的,其中2个引脚为按下 转轮开关(也就相当于鼠标中键)。另外3个引脚用来 检测旋转方向以及旋转步数的检测端。引脚分别为a,b,c b接地a,c分别接到P2.0和P2.1口并分别接两个10K上拉 电阻,并且a,c需要分别对地接一个104的电容,否则 因为编码开关的触点抖动会引起轻微误动作。本程序不 使用定时器,不占用中断,不使用延时代码,并对每个 细分步数进行判断,避免一切误动作,性能超级稳定。 我使用的编码器是APLS的EC11B可以参照附件的时序图 编码器控制流水灯最能说明问题,下面是以一段流水 灯来演示。

    标签: 代码 编码开关

    上传时间: 2017-07-03

    上传用户:gaojiao1999

  • 北京102_北京虞邦

    说明: a) 单字符用于子站向主站传输的确认(肯定或否定); b) 控制域是用来区别不同的帧和数据传输方向的单字节,详见第二节; c) 地址域是链路地址(一般是RTU编号),2字节,低字节在前,高字节在后; d) 帧校验是用户数据区的各字节的算术和对256的模; e) 变长帧中的L为用户数据区的长度,2个L相等; f) 变长帧中的ASDU为应用服务数据单元,详见第三节; g) 数据传输方式:是异步传输方式,11位,其中启动位为二进制0,数据位8位,一个偶校验位,一个停止位。

    标签: 102

    上传时间: 2016-12-14

    上传用户:ts7089524

  • 点亮P10单元板单片机源程序

    /*================================================================= 4扫16*16下入上出C语言程序, 低位起笔,数据反相。 预定义 **************************************************************/ #include #include //可使用其中定义的宏来访问绝对地址? bit ture=1; // 使能正反相位选择 bit false=0; // 使能反相 sbit SCK=P3^6; // EQU 0B6H ; 移位 sbit RCK=P3^5; //EQU 0B5H ; 并行锁存 //sbit P1_3=P1^3; //外RAM扩展读写控制,不能重复申明 sbit EN1=P1^7; //BIT sbit FB=0xD8; // FB作为标志 sfr BUS_SPEED=0xA1; //访问片外RAM速度设置寄存器 sfr P4SW=0xBB; //P4SW寄存器设置P4.4,P4.5,P4.6的功能 sfr P4=0xC0; // P4 EQU 0C0H sbit NC=P4^4; sbit CS=P4^6; //片选 sfr WDT_CONTR=0xC1; // 0C1H ;看门狗寄存器 sfr AUXR=0x8E; // EQU 08EH ;附件功能控制寄存器 sfr16 DPTR=0x82; sfr CLK_DIV=0x97 ; //时钟分频寄存器 const unsigned int code All_zk =256 ; // 0E11H ;原数据总字节 const unsigned int code am_zk =128 ; // 0E13H ;单幕数据量 const unsigned char code asp = 255; // asp数据相位字,如果是正相字,那么asp=0 bit basp=1; // asp数据相位字标记,如果是正相字,那么basp=0 const unsigned char code font[]= // 晶科电子LED数码(反相字) {0xBD,0x81,0xEF,0xFF,0xBD,0x81,0xF7,0xFF,0xEF,0xEB,0x80,0x9F,0xEF,0x8F,0xEF,0xEF,0x7F,0x7B,0x7B,0x7F,0xBF,0xEF,0xEF,0xFF,0x7F,0x00,0xFF,0xFF,0xFF,0x80,0xFE,0xFF, 0x81,0xBD,0x0F,0x0F,0x81,0xBD,0xF0,0xF0,0xEF,0xED,0xE7,0xE1,0xEF,0xE1,0xEE,0xEE,0x7F,0x7B,0x7B,0x7F,0xBF,0xEF,0xEF,0xFF,0x7F,0x7F,0x7F,0x03,0xFF,0xFF,0xFF,0xF0, 0xBD,0x81,0xEF,0xEF,0xBD,0x81,0xF7,0xF7,0xEF,0x2E,0xC7,0xEF,0xEF,0xEE,0xED,0xED,0xFF,0x03,0x03,0x7F,0x80,0xE0,0xE0,0xFF,0x5F,0x7F,0x7F,0xFF,0xFF,0xFF,0xFF,0xFB, 0xFF,0xBD,0xFF,0x0F,0xFF,0xBD,0xFF,0xF0,0xEF,0xEF,0xAB,0xEF,0xEF,0xEF,0xED,0xED,0xFF,0x7B,0x7B,0x03,0xFF,0xEF,0xEF,0xE0,0xBF,0x7F,0x7F,0xFF,0xFF,0xFF,0xDF,0xFD, 0xBD,0xFD,0xFD,0xFF,0xBD,0xED,0xBD,0xFF,0xDD,0xBD,0xDD,0xFF,0xFF,0xFF,0xFF,0xFF,0xCF,0xEF,0x00,0xEF,0xEB,0xEB,0x81,0xFB,0xC3,0xDA,0xF7,0xFF,0xDF,0xDF,0xEE,0xFF, 0x80,0xFD,0xFD,0xFF,0xC0,0xED,0xED,0xFF,0xE0,0xBD,0xBD,0xFF,0xFF,0xFF,0xFF,0xFF,0xB3,0x00,0xC7,0x6D,0x8D,0xEB,0xDD,0xF3,0xDB,0xDB,0xFB,0x40,0xDF,0xDF,0xEE,0xE0, 0xFF,0xFD,0xFD,0xFF,0xFF,0xFD,0xED,0xFF,0xFF,0xBD,0xBD,0xFF,0xFF,0xFF,0xFF,0xFF,0xFC,0xB7,0x2B,0xAB,0xDE,0xF7,0xDD,0xFB,0xFB,0x5B,0xC3,0xF7,0xEB,0xD0,0xEE,0xEF, 0xFF,0xFD,0xFD,0xF8,0xFF,0xBD,0xE1,0xC0,0xFF,0xBD,0xBD,0xE0,0xFF,0xFF,0xFF,0xFF,0xFF,0xD3,0xED,0xC7,0xFF,0xF7,0xDC,0xFB,0xFF,0xDB,0xD9,0xF7,0xF7,0xDF,0xC0,0xEE}; const unsigned char data xzL_data =0x08; //0603H;一幕一行字节数 const unsigned int data aL_data =0x20; //单幕单号线(单组线)数据量 const unsigned char data mov =0x03A ; //移动速度 const unsigned int data t_T =0x040A ; //0E0AH ; 05FAH; ;停留时间 const unsigned char data mu_num=0x02 ; //0602H ;幕数 unsigned int m; //m幕长变量<=am_zk unsigned char data_z; //数据寄存器 unsigned int xd; //数据指针寄存器 /*********************************************************************** 数据转移子函数 ===============================================================*/ char MOVD() { unsigned char f,nm; //nm幕数控制 unsigned char code *dptr; unsigned char xdata *xdptr = 0; f = asp ; for (m=0; m

    标签: P10 单元板 单片机源程序

    上传时间: 2017-05-04

    上传用户:sbfd010

  • 微弱信号检测与辨识机制研究

    微弱信号检测的目的是从噪声中提取有用信号,或用一些新技术和新方法来提高检测系统输出信号的信噪比。本文简要分析了常用的微弱信号检测理论,对小波变换的微弱信号检测原理进行了进一步的分析。然后提出了微弱信号检测系统的软硬件设计,在阐述了系统的整体设计的基础上,对电路所选芯片的结构和性能进行了简单的介绍,选用了具有14位分辨率的4路并行A/D转换器AD7865作为模数转换器,且选用Xilinx公司的Spartan-3系列FPGA逻辑器件作为控制器,控制整个系统的各功能模块。同时,利用FPGA设计了先入先出存储器,充分利用系统资源,降低了外围电路的复杂度,为电路调试及制板带来了极大的方便,且提升了系统的采集速度和集成度。系统的软件设计采用Verilog HDL语言编程,在Xilinx ISE软件开发平台上完成编译和综合,并选用ModelSim SE 6.0完成了波形仿真。关键词:微弱信号检测;信号调理:FPGA:AD7865;Verilog HDL信息时代需要获取许多有用的信息,多数科学研究及工程应用技术所需的信息都是通过检测的方法来获取的。若被检测的信号非常微弱,就很容易被噪声湮没,那么很难有效的从噪声中检测出有用信号。微弱信号在绝对意义上是指信号本身非常微弱,而在相对意义上是指信号相对于强背景噪声而言的非常微弱,也就是指信噪比极低。人们进行长期的研究工作来检测被噪声所覆盖的微弱信号,分析噪声产生的原因以及规律,且研究被测信号的特点、相关性以及噪声统计特性,从而研究出从背景噪声中检测有用信号的方法。1微弱信号检测(Weak Signal Detection)技术2.3.41主要是提高信号的信噪比,从噪声中检测出有用的微弱信号。对于这些微弱的被测量(如:微振动、微流量、微压力、微温差、弱光、弱磁、小位移、小电容等),大多数都是利用相应的传感器将微弱信号转换为微弱电流或者低电压,再经过放大器将其幅度放大到预期被测量的大小。

    标签: 微弱信号检测

    上传时间: 2022-06-18

    上传用户:canderile

  • 动态匹配换能器的超声波电源控制策略.

    超声波电源广泛应用于超声波加工、诊断、清洗等领域,其负载超声波换能器是一种将超音频的电能转变为机械振动的器件。由于超声换能器是一种容性负载,因此换能器与发生器之间需要进行阻抗匹配才能工作在最佳状态。串联匹配能够有效滤除开关型电源输出方波存在的高次谐波成分,因此应用较为广泛。但是环境温度或元件老化等原因会导致换能器的谐振频率发生漂移,使谐振系统失谐。传统的解决办法就是频率跟踪,但是频率跟踪只能保证系统整体电压电流同频同相,由于工作频率改变了而匹配电感不变,此时换能器内部动态支路工作在非谐振状态,导致换能器功率损耗和发热,致使输出能量大幅度下降甚至停振,在实际应用中受到限制。所以,在跟踪谐振点调节逆变器开关频率的同时应改变匹配电感才能使谐振系统工作在最高效能状态。针对按固定谐振点匹配超声波换能器电感参数存在的缺点,本文应用耦合振荡法对换能器的匹配电感和耦合频率之间的关系建立数学模型,证实了匹配电感随谐振频率变化的规律。给出利用这一模型与耦合工作频率之间的关系动态选择换能器匹配电感的方法。经过分析比较,选择了基于磁通控制原理的可控电抗器作为匹配电感,通过改变电抗控制度调节电抗值。并给出了实现这一方案的电路原理和控制方法。最后本文以DSPTMS320F2812为核心设计出实现这一原理的超声波逆变电源。实验结果表明基于磁通控制的可控电抗器可以实现电抗值随电抗控制度线性无级可调,由于该电抗器输出正弦波,理论上没有谐波污染。具体采用复合控制策略,稳态时,换能器工作在DPLL锁定频率上;动态时,逐步修改匹配电抗大小,搜索输出电流的最大值,再结合DPLL锁定该频率。配合PS-PWM可实现功率连续可调。该超声波换能系统能够有效的跟随最大电流输出频率,即使频率发生漂移系统仍能保持工作在最佳状态,具有实际应用价值。

    标签: 动态匹配换能器 超声波电源

    上传时间: 2022-06-18

    上传用户:

  • 安森美车规级1080P图像传感器AR0231手册

    AR0231AT7C00XUEA0-DRBR(RGB滤光)安森美半导体推出采用突破性减少LED闪烁 (LFM)技术的新的230万像素CMOS图像传感器样品AR0231AT,为汽车先进驾驶辅助系统(ADAS)应用确立了一个新基准。新器件能捕获1080p高动态范围(HDR)视频,还具备支持汽车安全完整性等级B(ASIL B)的特性。LFM技术(专利申请中)消除交通信号灯和汽车LED照明的高频LED闪烁,令交通信号阅读算法能于所有光照条件下工作。AR0231AT具有1/2.7英寸(6.82 mm)光学格式和1928(水平) x 1208(垂直)有源像素阵列。它采用最新的3.0微米背照式(BSI)像素及安森美半导体的DR-Pix™技术,提供双转换增益以在所有光照条件下提升性能。它以线性、HDR或LFM模式捕获图像,并提供模式间的帧到帧情境切换。 AR0231AT提供达4重曝光的HDR,以出色的噪声性能捕获超过120dB的动态范围。AR0231AT能同步支持多个摄相机,以易于在汽车应用中实现多个传感器节点,和通过一个简单的双线串行接口实现用户可编程性。它还有多个数据接口,包括MIPI(移动产业处理器接口)、并行和HiSPi(高速串行像素接口)。其它关键特性还包括可选自动化或用户控制的黑电平控制,支持扩频时钟输入和提供多色滤波阵列选择。封装和现状:AR0231AT采用11 mm x 10 mm iBGA-121封装,现提供工程样品。工作温度范围为-40℃至105℃(环境温度),将完全通过AEC-Q100认证。

    标签: 图像传感器

    上传时间: 2022-06-27

    上传用户:XuVshu

  • 霍尼韦尔 3轴数字罗盘IC HMC5883L技术手册

    霍尼韦尔 HMC5883L 是一种表面贴装的高集成模块,并带有数字接口的弱磁传感器芯片,应用于低成本罗盘和磁场检测领域。HMC5883L 包括最先进的高分辨率HMC118X 系列磁阻传感器,并附带霍尼韦尔专利的集成电路包括放大器、自动消磁驱动器、偏差校准、能使罗盘精度控制在1°~2°的12 位模数转换器.简易的I2C 系列总线接口。HMC5883L 是采用无铅表面封装技术,带有16 引脚,尺寸为3.0X3.0X0.9mm。HMC5883L 的所应用领域有手机、笔记本电脑、消费类电子、汽车导航系统和个人导航系统。HMC5883L 采用霍尼韦尔各向异性磁阻(AMR)技术,该技术的优点是其他磁传感器技术所无法企及。这些各向异性传感器具有在轴向高灵敏度和线性高精度的特点.传感器带有的对于正交轴低敏感行的固相结构能用于测量地球磁场的方向和大小,其测量范围从毫高斯到 8 高斯(gauss)。 霍尼韦尔的磁传感器在低磁场传感器行业中是灵敏度最高和可靠性最好的传感器。

    标签: hmc5883l 传感器

    上传时间: 2022-07-23

    上传用户:

  • 微电脑型数学演算式隔离传送器

    特点: 精确度0.1%满刻度 可作各式數學演算式功能如:A+B/A-B/AxB/A/B/A&B(Hi or Lo)/|A|/ 16 BIT类比输出功能 输入与输出绝缘耐压2仟伏特/1分钟(input/output/power) 宽范围交直流兩用電源設計 尺寸小,穩定性高

    标签: 微电脑 数学演算 隔离传送器

    上传时间: 2014-12-23

    上传用户:ydd3625