虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

异步传输模式

  • 带有异步复位端的D触发器

    带有异步复位端的D触发器#2

    标签: 异步复位 D触发器

    上传时间: 2014-12-23

    上传用户:caiqinlin

  • 节目传输调度系统的电磁兼容性研究

    文中在阐释电磁干扰及电磁兼容性的基础上,结合工程实践,分析了处于强电磁环境中的节目传输调度系统干扰信号的耦合路径,就抑制系统内外的电磁干扰、改善和提高系统的电磁兼容性指标的措施进行了论证。

    标签: 传输 调度系统 电磁兼容性

    上传时间: 2014-01-13

    上传用户:summery

  • 时钟分相技术应用

    摘要: 介绍了时钟分相技术并讨论了时钟分相技术在高速数字电路设计中的作用。 关键词: 时钟分相技术; 应用 中图分类号: TN 79  文献标识码:A   文章编号: 025820934 (2000) 0620437203 时钟是高速数字电路设计的关键技术之一, 系统时钟的性能好坏, 直接影响了整个电路的 性能。尤其现代电子系统对性能的越来越高的要求, 迫使我们集中更多的注意力在更高频率、 更高精度的时钟设计上面。但随着系统时钟频率的升高。我们的系统设计将面临一系列的问 题。 1) 时钟的快速电平切换将给电路带来的串扰(Crosstalk) 和其他的噪声。 2) 高速的时钟对电路板的设计提出了更高的要求: 我们应引入传输线(T ransm ission L ine) 模型, 并在信号的匹配上有更多的考虑。 3) 在系统时钟高于100MHz 的情况下, 应使用高速芯片来达到所需的速度, 如ECL 芯 片, 但这种芯片一般功耗很大, 再加上匹配电阻增加的功耗, 使整个系统所需要的电流增大, 发 热量增多, 对系统的稳定性和集成度有不利的影响。 4) 高频时钟相应的电磁辐射(EM I) 比较严重。 所以在高速数字系统设计中对高频时钟信号的处理应格外慎重, 尽量减少电路中高频信 号的成分, 这里介绍一种很好的解决方法, 即利用时钟分相技术, 以低频的时钟实现高频的处 理。 1 时钟分相技术 我们知道, 时钟信号的一个周期按相位来分, 可以分为360°。所谓时钟分相技术, 就是把 时钟周期的多个相位都加以利用, 以达到更高的时间分辨。在通常的设计中, 我们只用到时钟 的上升沿(0 相位) , 如果把时钟的下降沿(180°相位) 也加以利用, 系统的时间分辨能力就可以 提高一倍(如图1a 所示)。同理, 将时钟分为4 个相位(0°、90°、180°和270°) , 系统的时间分辨就 可以提高为原来的4 倍(如图1b 所示)。 以前也有人尝试过用专门的延迟线或逻辑门延时来达到时钟分相的目的。用这种方法产生的相位差不够准确, 而且引起的时间偏移(Skew ) 和抖动 (J itters) 比较大, 无法实现高精度的时间分辨。 近年来半导体技术的发展, 使高质量的分相功能在一 片芯片内实现成为可能, 如AMCC 公司的S4405, CY2 PRESS 公司的CY9901 和CY9911, 都是性能优异的时钟 芯片。这些芯片的出现, 大大促进了时钟分相技术在实际电 路中的应用。我们在这方面作了一些尝试性的工作: 要获得 良好的时间性能, 必须确保分相时钟的Skew 和J itters 都 比较小。因此在我们的设计中, 通常用一个低频、高精度的 晶体作为时钟源, 将这个低频时钟通过一个锁相环(PLL ) , 获得一个较高频率的、比较纯净的时钟, 对这个时钟进行分相, 就可获得高稳定、低抖动的分 相时钟。 这部分电路在实际运用中获得了很好的效果。下面以应用的实例加以说明。2 应用实例 2. 1 应用在接入网中 在通讯系统中, 由于要减少传输 上的硬件开销, 一般以串行模式传输 图3 时钟分为4 个相位 数据, 与其同步的时钟信号并不传输。 但本地接收到数据时, 为了准确地获取 数据, 必须得到数据时钟, 即要获取与数 据同步的时钟信号。在接入网中, 数据传 输的结构如图2 所示。 数据以68MBös 的速率传输, 即每 个bit 占有14. 7ns 的宽度, 在每个数据 帧的开头有一个用于同步检测的头部信息。我们要找到与它同步性好的时钟信号, 一般时间 分辨应该达到1ö4 的时钟周期。即14. 7ö 4≈ 3. 7ns, 这就是说, 系统时钟频率应在300MHz 以 上, 在这种频率下, 我们必须使用ECL inp s 芯片(ECL inp s 是ECL 芯片系列中速度最快的, 其 典型门延迟为340p s) , 如前所述, 这样对整个系统设计带来很多的困扰。 我们在这里使用锁相环和时钟分相技术, 将一个16MHz 晶振作为时钟源, 经过锁相环 89429 升频得到68MHz 的时钟, 再经过分相芯片AMCCS4405 分成4 个相位, 如图3 所示。 我们只要从4 个相位的68MHz 时钟中选择出与数据同步性最好的一个。选择的依据是: 在每个数据帧的头部(HEAD) 都有一个8bit 的KWD (KeyWord) (如图1 所示) , 我们分别用 这4 个相位的时钟去锁存数据, 如果经某个时钟锁存后的数据在这个指定位置最先检测出这 个KWD, 就认为下一相位的时钟与数据的同步性最好(相关)。 根据这个判别原理, 我们设计了图4 所示的时钟分相选择电路。 在板上通过锁相环89429 和分相芯片S4405 获得我们所要的68MHz 4 相时钟: 用这4 个 时钟分别将输入数据进行移位, 将移位的数据与KWD 作比较, 若至少有7bit 符合, 则认为检 出了KWD。将4 路相关器的结果经过优先判选控制逻辑, 即可输出同步性最好的时钟。这里, 我们运用AMCC 公司生产的 S4405 芯片, 对68MHz 的时钟进行了4 分 相, 成功地实现了同步时钟的获取, 这部分 电路目前已实际地应用在某通讯系统的接 入网中。 2. 2 高速数据采集系统中的应用 高速、高精度的模拟- 数字变换 (ADC) 一直是高速数据采集系统的关键部 分。高速的ADC 价格昂贵, 而且系统设计 难度很高。以前就有人考虑使用多个低速 图5 分相技术应用于采集系统 ADC 和时钟分相, 用以替代高速的ADC, 但由 于时钟分相电路产生的相位不准确, 时钟的 J itters 和Skew 比较大(如前述) , 容易产生较 大的孔径晃动(Aperture J itters) , 无法达到很 好的时间分辨。 现在使用时钟分相芯片, 我们可以把分相 技术应用在高速数据采集系统中: 以4 分相后 图6 分相技术提高系统的数据采集率 的80MHz 采样时钟分别作为ADC 的 转换时钟, 对模拟信号进行采样, 如图5 所示。 在每一采集通道中, 输入信号经过 缓冲、调理, 送入ADC 进行模数转换, 采集到的数据写入存储器(M EM )。各个 采集通道采集的是同一信号, 不过采样 点依次相差90°相位。通过存储器中的数 据重组, 可以使系统时钟为80MHz 的采 集系统达到320MHz 数据采集率(如图6 所示)。 3 总结 灵活地运用时钟分相技术, 可以有效地用低频时钟实现相当于高频时钟的时间性能, 并 避免了高速数字电路设计中一些问题, 降低了系统设计的难度。

    标签: 时钟 分相 技术应用

    上传时间: 2013-12-17

    上传用户:xg262122

  • 感应耦合电能传输系统中整流电路的研究

    设计了感应耦合电能传输系统与二极管整流及同步整流电路,并针对输出低电压大电流的情况,分析了整流电路的效率。通过对实验电路进行对比测试,验证了系统效果。测试结果表明,在感应耦合电能传输系统中应用同步整流技术,系统效率得到显著提高。

    标签: 耦合 电能传输 整流电路

    上传时间: 2013-11-04

    上传用户:13162218709

  • 基于磁耦合谐振的无线电能传输系统的研究

    分析并设计实现了一种基于磁耦合谐振的无线电能传输系统。介绍了无线电能传输技术,阐述了磁耦合谐振式无线电能传输技术原理及其优越性,分析了磁耦合谐振无线电能传输系统中传输距离d及负载阻值RL等相关参数对系统传输功率、效率的影响。对所提出的无线电能传输系统进行实验测试,实验结果表明,需综合考虑上述相关参数,以达到传输效率、传输功率的最优化设计。同时验证了理论分析的有效性。

    标签: 磁耦合 无线电能传输 谐振

    上传时间: 2014-01-04

    上传用户:集美慧

  • 基于电流环电路的远距离数据传输

    电平转换在工业控制远距离数据传输过程中被广泛采用,取得了良好的效果。阐述了另一种数据传输的电路——电流环,该电路将电平信号转换为电流信号,以电流作为数据传输的载体,在恶劣工业环境下具有较强的抗噪、抗干扰的能力。

    标签: 电流环电路 数据传输

    上传时间: 2014-12-24

    上传用户:zhuce80001

  • 开关电源中功率MOSFET管损坏模式及分析

    结合功率MOSFET管不同的失效形态,论述了功率MOSFET管分别在过电流和过电压条件下损坏的模式,并说明了产生这样的损坏形态的原因,也分析了功率MOSFET管在关断及开通过程中发生失效形态的差别,从而为失效在关断或在开通过程中发生损坏提供了判断依据。给出了测试过电流和过电压的电路图。同时分析了功率MOSFET管在动态老化测试中慢速开通、在电池保护电路应用中慢速关断及较长时间工作在线性区时损坏的形态。最后,结合实际应用,论述了功率MOSFET通常会产生过电流和过电压二种混合损坏方式损坏机理和过程。

    标签: MOSFET 开关电源 功率

    上传时间: 2013-11-14

    上传用户:dongqiangqiang

  • FSK-CC1101大功率收发模块

    CC1101 是集FSK/ASK/OOK/MSK调制方式于一体的高功率、性能 收发模块。它提供扩展硬件支持实现信息包处理、数据 缓冲、群发射、空闲信道评估、链接质量指示和无线唤 醒,可以采用曼彻斯特编码进行调制解调它的数据流。 性能优越并且易于应用到你的产品设计中,它可以应用在 RT-001-CC1101 315/433/868/915MHz ISM/SRD频段的系统中,它可以应用在比如消费类电子产品、自动抄表系统、 双向防盗器等等。 该型号最大的有点在于模块内部采用大功率PA及LNA架构,且采用电子开关及控制线路根据客户 的需求达到远距离传输数据。发射功率可通过外部电源来设置,最大发射功率可以达到1W。超远距 离方案应用的最佳选择。 1.1 基本特性 ●省电模式下,低电流损耗 ●方便投入应用 ●高效的串行编程接口 ●工作温度范围:﹣40℃~+85℃ ●工作电压:1.8~ 3.6 Volts. ●有效频率:300-348Mhz, 400-464Mhz,800-928Mhz ●灵敏度高、输出功率高且可编程

    标签: FSK-CC 1101 大功率 收发模块

    上传时间: 2013-11-11

    上传用户:1234xhb

  • 峰值电流模式的单片式DCDC变换器设计

    峰值电流模式的单片式DCDC变换器设计

    标签: DCDC 峰值电流 单片式 变换器

    上传时间: 2014-12-24

    上传用户:debuchangshi

  • 五种PWM反馈控制模式研究

    五种PWM反馈控制模式研究

    标签: PWM 反馈控制 模式

    上传时间: 2013-10-14

    上传用户:Amygdala