虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

延时<b>保护电路</b>

  • 无电解电容LED驱动电路

     针对现有LED驱动电路存在电解电容限制寿命的不足,提出了一种无电解电容的LED驱动电路的设计方法。该方法采用Panasonic松下MIP553内置PFC可调光LED驱动电路的芯片,与外部非隔离底边斩波电路合成作为基本的电路结构,输出稳定的电流用以满足LED工作的需要。同时设计保护电路来保护负载。实验结果表明,控制器芯片能稳定工作,并且可以实现27 V的恒压输出和350 mA的恒流输出。

    标签: LED 无电解电容 驱动电路

    上传时间: 2013-10-10

    上传用户:lalalal

  • max5094数据表

        MAX5094 CMOS、高性能、电流模式PWM控制器具有宽输入电压范围隔离/非隔离电源所需的所有特性。这些控制器非常适用于低功率和大功率通用电源及电信电源。MAX5094含有一个快速比较器,从电流检测端到输出的延时通常仅为60ns,用于过流保护功能。MAX5094内置一个误差放大器,在COMP端产生输出。采用外部元件控制COMP电压的上升可以实现软启动。通过外部电阻和电容可以调节振荡器的频率,范围在20kHz至1MHz之间。定时电容的放电电流经过了微调,可以在给定频率下设定死区时间和最大占空比。RTCT端输出的锯齿波可以在需要的时候用来进行斜率补偿。

    标签: 5094 max 数据表

    上传时间: 2013-10-31

    上传用户:zhangxin

  • 脉冲超声传感器激发接收电路设计

    重点研究了场效应管驱动电路、脉冲超声波高压激发电路及接收保护电路,并简要介绍了其余电路的实现。对研制的电路进行了性能分析,所用电子元器件均无过热现象,并获得较为理想的电脉冲信号。设计的电路板已成功用于磁致伸缩式超声传感器测量材料弹性模量。

    标签: 脉冲 接收 电路设计 超声传感器

    上传时间: 2013-10-15

    上传用户:fhjdliu

  • 基于dsPIC30F3010的无刷直流电动机控制系统设计

    分析了dsPIC30F3010外围电路,逆变及其驱动电路,反电动势检测电路,电流采样与过流保护电路,开发了主程序和中速事件处理程序, 并给出了电机正常运行时端电压的波形。实验结果表明系统能够控制电机顺利起动,而且实现了电机正确的换相和正常运行,证明了系统设计的可行性。

    标签: dsPIC F3010 3010 30F

    上传时间: 2014-12-24

    上传用户:ikemada

  • 熔断器在公共电网中的电缆保护的历史和未来

    熔断器在公共电网中的电缆保护(从变压器下端至终端用户上端)的历史和未来:配电网络的安全仅需考虑短路故障发生时的保护不需过多考虑过电流不需过多考虑过载不需远程控制不需经常操作不需专业人员进行操作不需手动调整概述:1866年当西门子发明第一台发电机时,德国建立了发电厂。(爱迪生在1879年发明了第一个灯泡,金米勒公司成立于1897年)电网:一百多年来德国的电网一直采用熔断器作为保护手段,并不断的发展和进步。六十年前整个欧洲制定了标准,都采用了同样的保护手段。

    标签: 熔断器 保护 电网 电缆

    上传时间: 2014-01-03

    上传用户:cange111

  • TL431及PC817在开关电源中的应用

      本设计的基准电压和反馈电路采用常用的三端稳压器TL431来完成,在反馈电路的应用中运用采样电压通过TL431限压,再通过光电耦合器PC817把电压反馈到SG3525的COMP端。   由于TL431具有体积小、基准电压精密可调,输出电流大等优点,所以用TL431可以制作多种稳压器。其性能是输出电压连续可调达36V,工作电流范围宽达0.1~100mA,动态电阻典型值为0.22欧,输出杂波低。其最大输入电压为37V,最大工作电流为150mA,内基准电压为2.5V,输出电压范围为2.5~30V。   TL431是由美国德州仪器(TI)和摩托罗拉公司生产的2.5~36V可调式精密并联稳压器。其性能优良,价格低廉,可广泛用于单片精密开关电源或精密线性稳压电源中。此外,TL431还能构成电压比较器、电源电压监视器、延时电路、精密恒流源等。

    标签: 431 817 TL PC

    上传时间: 2013-10-21

    上传用户:mpquest

  • 现代电源技术中电容器的正确选用

    电容器作为基本元件在电子线路中起着重要作用,在传统的应用中,电容器主要用作旁路耦合、电源滤波、隔直以及小信号中的振荡、延时等。以上电路对电容器参数的主要要求有:电容量;额定电压;正切损耗;漏电流等,对其它参数没有过多的要求。 随着电子线路,特别是电力电子电路的发展对不同应用场合的电容器提出了不同的特殊要求。

    标签: 电源技术 电容器

    上传时间: 2013-10-13

    上传用户:weiwolkt

  • 漏电保护器的工作原理、使用范围、接线方式

    漏电保护器的工作原理:漏电保护器主要包括检测元件(零序电流互感器)、中间环节(包括放大器、比较器、脱扣器等)、执行元件(主开关)以及试验元件等几个部分。三相四线制供电系统的漏电保护器工作原理示意图。TA 为零序电流互感器,GF 为主开关,TL为主开关的分励脱扣器线圈。在被保护电路工作正常,没有发生漏电或触电的情况下,由克希荷夫定律可知,通过TA 一次侧的电流相量和等于零,即:这样TA 的二次侧不产生感应电动势,漏电保护器不动作,系统保持正常供电。当被保护电路发生漏电或有人触电时,由于漏电电流的存在,通过TA一次侧各相电流的相量和不再等于零,产生了漏电电流Ik。在铁心中出现了交变磁通。在交变磁通作用下,TL二次侧线圈就有感应电动势产生,此漏电信号经中间环节进行处理和比较,当达到预定值时,使主开关分励脱扣器线圈TL 通电,驱动主开关GF 自动跳闸,切断故障电路,从而实现保护。用于单相回路及三相三线制的漏电保护器的工作原理与此相同,不赘述。

    标签: 漏电保护器 工作原理 接线方式

    上传时间: 2013-10-19

    上传用户:zhangjinzj

  • 直流稳压电源的研究与设计

    一、实验目的         1. 学会选择变压器、整流二极管、滤波电容及集成稳             压 器来设计直流稳压电源。       2. 掌握直流稳压电源的主要性能参数及测试方法。 二、实验原理         电子设备一般都需要直流电源供电。这些直流电 除了少数直接利用干电池和直流发电机外,大多数是 采用把交流电(市电)转变为直流电的直流稳压电源。     直流稳压电源由电源变压器T、整流、滤波和稳压电路四部分组成,其原理框图如图1 所示。电网供给的交流电压u1(220V,50Hz) 经电源变压器降压后,得到符合电路需要的交流电压u2,然后由整流电路变换成方向不变、大小随时间变化的脉动电压u3,再用滤波器滤去其交流分量,就可得到比较平直的直流电压uI。但这样的直流输出电压,还会随交流电网电压的波动或负载的变动而变化。在对直流供电要求较高的场合,还需要使用稳压电路,以保证输出直流电压更加稳定。 1、串联型稳压电源的基本原理             图2是由分立元件组成的串联型稳压电源的电路图。其整流部分为单相桥式整流、电容滤波电路。稳压部分为串联型稳压电路,它由调整元件(晶体管V1);比较放大器V2、R7;取样电路R1、R2、RP,基准电压VD、R3和过流保护电路V3管及电阻R4、R5、R6等组成。整个稳压电路是一个具有电压串联负反馈的闭环系统,其稳压过程为:当电网电压波动或负载变动引起输出直流电压发生变化时,取样电路取出输出电压的一部分送入比较放大器,并与基准电压进行比较,产生的误差信号经T2放大后送至调整管V1的基极,使调整管改变其管压降,以补偿输出电压的变化,从而达到稳定输出电压的目的。 2、集成稳压器      能够完成稳压功能的集成稳压器种类很多,根据调整管工作在线性放大区还是工作在开关状态,将其分为线性集成稳压器和开关集成稳压器。线性集成稳压器中,由于三端式稳压器只有三个引出端子,性能稳定、价格低廉等优点,因而得到广泛的应用。三端式稳压器有两种,一种输出电压是固定的,称为固定输出三端稳压器,另一种输出电压是可调的,称为可调三端稳压器。图 4是常用的三端稳压器示意图。

    标签: 直流稳压电源

    上传时间: 2013-11-27

    上传用户:qazxsw

  • SMARTISYS电源控制器、调光器系列简介

    SMARTISYS IPPCI系列电源控制器是会议演示、指挥控制等系统中必不可少的设备。通过对应用系统中所有设备的电源进行集中管理、定时、延时开关,以及对电动设备的程序化控制,能最大限度保护用电设备,极大的提高系统可靠性和使用方便性。 IPPCI系列产品有程序控制和手动控制两种模式;在应急情况下,可以通过手动方式对相关设备的电源直接进行开关控制及操作;在程序控制模式下,通TM过SmartControlBuilder编程进行任意独立或组合控制。输入采用4-pin专用网络接线端子,用于直接给电源控制系统供电和发送控制信号;另外,还包括9-pin接线端子,用于连接8个本地输入控制8路继电器的开、关。

    标签: SMARTISYS 电源控制器 调光器

    上传时间: 2013-10-25

    上传用户:wlcaption