虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

并网光伏发电专用<b>逆变器</b>技术要求

  • :介绍了一种基于数字信号处理器(DSP)的移相调频(Phase-Shifted and Frequency-Varied

    :介绍了一种基于数字信号处理器(DSP)的移相调频(Phase-Shifted and Frequency-Varied,PSFV)PWM控制 逆变电源,给出了主电路拓扑结构,分析了其控制原理并设计了其控制程序流程图。新颖的PSFV 控制能够实现输出 电压90%的调整率,输出电流波动小于单纯移相调功PWM方式,并在轻载时保持连续。功率开关器件零电压零电流 通断(Zero-Voltage-Zero-Current Switching,ZVZCS)软开关的实现,有利于进一步提高开关频率和降低开关损耗。采用 高性能的专用DSP 芯片TMS320F2812 实现了系统的数字控制,满足了系统控制的灵活性和实时性,减小了系统的 体积和生产成本。仿真分析和实验结果证明了此控制模式的可行性与合理性。

    标签: Frequency-Varied Phase-Shifted DSP and

    上传时间: 2013-12-04

    上传用户:kristycreasy

  • 光伏发电MPPT控制模型

    当光照或温度变化时,依然能跟跟踪最大功率发电

    标签: SIMULINK 光伏仿真模型

    上传时间: 2015-12-11

    上传用户:zero890213

  • 集中器本地通信模块接口协议

    本系列标 准分为下列标准: Q/GDW **1-2009 电力用户用电信息采集系统 功能规范 Q/GDW **2-2009 电力用户用电信息采集系统 专变采集终端技术规范 Q/GDW **3-2009 电力用户用电信息采集系统 集中抄表终端技术规范 Q/GDW **4-2009 电力用户用电信息采集系统 通信单元技术规范 Q/GDW **5-2009 电力用户用电信息采集系统 专变采集终端型式规范 Q/GDW **6-2009 电力用户用电信息采集系统 集中器型式规范 Q/GDW **7-2009 电力用户用电信息采集系统 采集器型式规范 Q/GDW **8-2009 电力用户用电信息采集系统 主站与采集终端通信协议 Q/GDW **9-2009 电力用户用电信息采集系统 集中器与下行通信模块本地接口通信协议 Q/GDW *10-2009 电力用户用电信息采集系统 安全防护技术规范 Q/GDW *11-2009 电力用户用电信息采集系统 检验技术规范 Q/GDW *12-2009 电力用户用电信息采集系统 专变采集终端检验技术规范 Q/GDW *13-2009 电力用户用电信息采集系统 集中抄表终端检验技术规范 Q/GDW *14-2009 电力用户用电信息采集系统 通信单元检验技术规范 Q/GDW *15-2009 电力用户用电信息采集系统 主站软件设计规范 Q/GDW *16-2009 电力用户用电信息采集系统 终端应用软件设计规范

    标签: 集中器 通信模块 接口协议

    上传时间: 2017-02-04

    上传用户:aarons大叔

  • 12345

    /****************temic*********t5557***********************************/    #include   <at892051.h>     #include   <string.h>    #include   <intrins.h>     #include   <stdio.h>     #define    uchar    unsigned char     #define    uint     unsigned int     #define    ulong    unsigned long     //STC12C2051AD的SFR定义     sfr  WDT_CONTR = 0xe1;//stc2051的看门狗??????     /**********全局常量************/    //写卡的命令     #define    write_command0       0//写密码     #define    write_command1       1//写配置字     #define    write_command2       2//密码写数据     #define    write_command3       3//唤醒     #define    write_command4       4//停止命令     #define    TRUE       1     #define    FALSE      0     #define    OK         0     #define    ERROR      255     //读卡的时间参数us     #define ts_min          250//270*11.0592/12=249//取近似的整数     #define ts_max          304//330*11.0592/12=304     #define t1_min          73//90*11.0592/12=83:-10调整     #define t1_max          156//180*11.0592/12=166     #define t2_min          184//210*11.0592/12=194     #define t2_max          267//300*11.0592/12=276     //***********不采用中断处理:采用查询的方法读卡时关所有中断****************/     sbit p_U2270B_Standby = P3^5;//p_U2270B_Standby PIN=13     sbit p_U2270B_CFE = P3^3;//p_U2270B_CFE     PIN=6     sbit p_U2270B_OutPut = P3^7;//p_U2270B_OutPut  PIN=2     sbit wtd_sck = P1^7;//SPI总线     sbit wtd_si = P1^3;    sbit wtd_so = P1^2;    sbit iic_data = P1^2;//lcd IIC     sbit iic_clk = P1^7;    sbit led_light = P1^6;//测试绿灯     sbit led_light1 = P1^5;//测试红灯     sbit led_light_ok  = P1^1;//读卡成功标志     sbit fengmingqi = P1^5;    /***********全局变量************************************/       uchar data Nkey_a[4] = {0xA0, 0xA1, 0xA2, 0xA3};//初始密码             //uchar idata card_snr[4];   //配置字     uchar data bankdata[28] = {1,2,3,4,5,6,7,1,2,3,4,5,6,7,1,2,3,4,5,6,7,1,2,3,4,5,6,7};     //存储卡上用户数据(1-7)7*4=28     uchar data cominceptbuff[6] = {1,2,3,4,5,6};//串口接收数组ram     uchar command; //第一个命令     uchar command1;//     //uint  temp;     uchar j,i;    uchar myaddr = 8;    //uchar ywqz_count,time_count;             //ywqz jishu:     uchar bdata DATA;    sbit BIT0 = DATA^0;    sbit BIT1 = DATA^1;    sbit BIT2 = DATA^2;    sbit BIT3 = DATA^3;    sbit BIT4 = DATA^4;    sbit BIT5 = DATA^5;    sbit BIT6 = DATA^6;    sbit BIT7 = DATA^7;    uchar bdata DATA1;    sbit BIT10 = DATA1^0;    sbit BIT11 = DATA1^1;    sbit BIT12 = DATA1^2;    sbit BIT13 = DATA1^3;    sbit BIT14 = DATA1^4;    sbit BIT15 = DATA1^5;    sbit BIT16 = DATA1^6;    sbit BIT17 = DATA1^7;    bit i_CurrentLevel;//i_CurrentLevel  BIT 00H(Saves current level of OutPut pin of U2270B)     bit timer1_end;    bit read_ok = 0;    //缓存定时值,因用同一个定时器     union HLint { uint W;    struct   {    uchar H;uchar L;   }   B; };//union HLint idata a     union HLint data a;    //缓存定时值,因用同一个定时器     union HLint0 { uint W;    struct {   uchar H;   uchar L; } B; };//union HLint idata a     union HLint0 data b;    /**********************函数原型*****************/    //读写操作     void f_readcard(void);//全部读出1~7 AOR唤醒     void f_writecard(uchar x);//根据命令写不同的内容和操作     void f_clearpassword(void);//清除密码     void f_changepassword(void);//修改密码     //功能子函数     void write_password(uchar data *data p);//写初始密码或数据     void write_block(uchar x,uchar data *data p);//不能用通用指针     void write_bit(bit x);//写位     /*子函数区*****************************************************/    void delay_2(uint x)    //延时,时间x*10us@12mhz,最小20us@12mhz     {    x--; x--;    while(x)    {      _nop_();      _nop_();      x--;    }    _nop_();//WDT_CONTR=0X3C;不能频繁的复位     _nop_();    }    /////////////////////////////////////////////////////////////////////     void initial(void)    {    SCON = 0x50; //串口方式1,允许接收     //SCON  =0x50;     //01010000B:10位异步收发,波特率可变,SM2=0不用接收到有效停止位才RI=1,     //REN=1允许接收     TMOD = 0x21; //定时器1 定时方式2(8位),定时器0 定时方式1(16位)     TCON = 0x40; //设定时器1 允许开始计时(IT1=1)     TH1 = 0xfD;  //FB 18.432MHz 9600 波特率     TL1 = 0xfD;  //fd 11.0592 9600     IE = 0X90;     //EA=ES=1     TR1 = 1;     //启动定时器     WDT_CONTR = 0x3c;//使能看门狗     p_U2270B_Standby = 0;//单电源     PCON = 0x00;    IP = 0x10;//uart you xian XXXPS PT1 PX1 PT0 PX0     led_light1 = 1;    led_light = 0;    p_U2270B_OutPut = 1;    }    /************************************************/    void f_readcard()//读卡     {    EA = 0;//全关,防止影响跳变的定时器计时     WDT_CONTR = 0X3C;//喂狗     p_U2270B_CFE = 1;//      delay_2(232);  //>2.5ms            /*   //   aor    用唤醒功能来防碰撞   p_U2270B_CFE = 0; delay_2(18);//start gap>150us   write_bit(1);//10=操作码读0页   write_bit(0);       write_password(&bankdata[24]);//密码block7   p_U2270B_CFE =1 ;//    delay_2(516);//编程及确认时间5.6ms   */    WDT_CONTR = 0X3C;//喂狗     led_light = 0;    b.W = 0;    while(!(read_ok == 1))    {             //while(p_U2270B_OutPut);//等一个稳定的低电平?超时判断?              while(!p_U2270B_OutPut);//等待上升沿的到来同步信号检测1       TR0 = 1;      //deng xia jiang       while(p_U2270B_OutPut);//等待下降沿       TR0 = 0;   a.B.H = TH0;   a.B.L = TL0;   TH0 = TL0 = 0;   TR0 = 1;//定时器晚启动10个周期       //同步头       if((324 < a.W) && (a.W < 353)) ;//检测同步信号1                  else     {     TR0 = 0;     TH0 = TL0 = 0;     goto read_error;    }      //等待上升沿        while(!p_U2270B_OutPut);   TR0 = 0;   a.B.H = TH0;   a.B.L = TL0;   TH0 = TL0 = 0;   TR0 = 1;//b.N1<<=8;            if(a.B.L < 195);//0.5p       else     {     TR0 = 0;     TH0 = TL0 = 0;     goto read_error;    }      //读0~7块的数据       for(j = 0;j < 28;j++)      {       //uchar i;                  for(i = 0;i < 16;i++)//8个位        {        //等待下降沿的到来         while(p_U2270B_OutPut);                TR0 = 0;     a.B.H = TH0;     a.B.L = TL0;     TH0 = TL0 = 0;     TR0 = 1;              if(t2_max < a.W/*)&&(a.W < t2_max)*/)//1P          {         b.W >>= 2;//先左移再赋值          b.B.L += 0xc0;                             i++;        }        else if(t1_min < a.B.L/*)&&(a.B.L < t1_max)*/)//0.5p         {         b.W >>= 1;         b.B.L += 0x80;                           }        else      {      TR0 = 0;      TH0 = TL0 = 0;      goto read_error;     }        i++;        while(!p_U2270B_OutPut);//上升                   TR0 = 0;     a.B.H = TH0;     a.B.L = TL0;     TH0 = TL0 = 0;     TR0 = 1;                      if(t2_min < a.W/*)&&(a.W < t2_max)*/)//1P          {         b.W >>= 2;         i++;        }        else if(t1_min < a.B.L/*a.W)&&(a.B.L < t1_max)*/)//0.5P         //else if(!(a.W==0))         {         b.W >>= 1;         //temp+=0x00;          //led_light1=0;led_light=1;delay_2(40000);         }        else      {      TR0 = 0;      TH0 = TL0 = 0;      goto read_error;     }        i++;       }       //取出奇位        DATA = b.B.L;       BIT13 = BIT7;    BIT12 = BIT5;    BIT11 = BIT3;    BIT10 = BIT1;       DATA = b.B.H;       BIT17 = BIT7;    BIT16 = BIT5;    BIT15 = BIT3;    BIT14 = BIT1;       bankdata[j] = DATA1;      }              read_ok = 1;//读卡完成了     read_error:    _nop_();    }       }    /***************************************************/    void f_writecard(uchar x)//写卡     {    p_U2270B_CFE = 1;    delay_2(232);  //>2.5ms            //psw=0 standard write     if (x == write_command0)//写密码:初始化密码     {      uchar i;      uchar data *data p;      p = cominceptbuff;      p_U2270B_CFE = 0;   delay_2(31);//start gap>330us       write_bit(1);//写操作码1:10       write_bit(0);//写操作码0       write_bit(0);//写锁定位0       for(i = 0;i < 35;i++)      {       write_bit(1);//写数据位1       }      p_U2270B_CFE = 1;      led_light1 = 0;   led_light = 1;   delay_2(40000);//测试使用       //write_block(cominceptbuff[4],p);       p_U2270B_CFE = 1;      bankdata[20] = cominceptbuff[0];//密码存入       bankdata[21] = cominceptbuff[1];      bankdata[22] = cominceptbuff[2];      bankdata[23] = cominceptbuff[3];    }    else if (x == write_command1)//配置卡参数:初始化     {      uchar data *data p;      p = cominceptbuff;      write_bit(1);//写操作码1:10       write_bit(0);//写操作码0       write_bit(0);//写锁定位0               write_block(cominceptbuff[4],p);      p_U2270B_CFE=  1;    }    //psw=1  pssword mode     else if(x == write_command2)  //密码写数据    {      uchar data*data p;      p = &bankdata[24];      write_bit(1);//写操作码1:10       write_bit(0);//写操作码0       write_password(p);//发口令       write_bit(0);//写锁定位0       p = cominceptbuff;      write_block(cominceptbuff[4],p);//写数据            }    else if(x == write_command3)//aor    //唤醒 {      //cominceptbuff[1]操作码10 X xxxxxB       uchar data *data p;      p = cominceptbuff;      write_bit(1);//10       write_bit(0);             write_password(p);//密码       p_U2270B_CFE = 1;//此时数据不停的循环传出     }    else //停止操作码     {      write_bit(1);//11       write_bit(1);             p_U2270B_CFE = 1;         }    p_U2270B_CFE = 1;    delay_2(560);//5.6ms     }    /************************************/    void f_clearpassword()//清除密码     {    uchar data *data p;    uchar i,x;          p = &bankdata[24];//原密码     p_U2270B_CFE = 0; delay_2(18);//start gap>150us     //操作码10:10xxxxxxB     write_bit(1);    write_bit(0);              for(x = 0;x < 4;x++)//发原密码     {             DATA = *(p++);      for(i = 0;i < 8;i++)      {       write_bit(BIT0);       DATA >>= 1;      }    }    write_bit(0);//锁定位0:0     p = &cominceptbuff[0];    write_block(0x00,p);//写新配置参数:pwd=0             //密码无效:即清除密码     DATA = 0x00;//停止操作码00000000B     for(i = 0;i < 2;i++)    {    write_bit(BIT7);    DATA <<= 1;    }    p_U2270B_CFE = 1;       delay_2(560);//5.6ms     }    /*********************************/    void f_changepassword()//修改密码            {       uchar data *data p;    uchar i,x,addr;    addr = 0x07;//block7     p = &Nkey_a[0];//原密码     DATA = 0x80;//操作码10:10xxxxxxB     for(i = 0;i < 2;i++)    {      write_bit(BIT7);      DATA <<= 1;    }    for(x = 0;x < 4;x++)//发原密码     {             DATA = *(p++);      for(i = 0;i < 8;i++)      {       write_bit(BIT7);       DATA >>= 1;      }    }    write_bit(0);//锁定位0:0     p = &cominceptbuff[0];    write_block(0x07,p);//写新密码     p_U2270B_CFE = 1;    bankdata[24] = cominceptbuff[0];//密码存入     bankdata[25] = cominceptbuff[1];    bankdata[26] = cominceptbuff[2];    bankdata[27] = cominceptbuff[3];    DATA = 0x00;//停止操作码00000000B     for(i = 0;i < 2;i++)    {      write_bit(BIT7);      DATA <<= 1;    }    p_U2270B_CFE = 1;       delay_2(560);//5.6ms     }    /***************************子函数***********************************/    void write_bit(bit x)//写一位     {    if(x)    {      p_U2270B_CFE = 1;   delay_2(32);//448*11.0592/120=42延时448us       p_U2270B_CFE = 0;   delay_2(28);//280*11.0592/120=26写1     }    else    {      p_U2270B_CFE = 1;   delay_2(92);//192*11.0592/120=18       p_U2270B_CFE = 0;   delay_2(28);//280*11.0592/120=26写0     }    }    /*******************写一个block*******************/    void write_block(uchar addr,uchar data *data p)    {    uchar i,j;        for(i = 0;i < 4;i++)//block0数据     {             DATA = *(p++);      for(j = 0;j < 8;j++)      {       write_bit(BIT0);       DATA >>= 1;      }    }    DATA = addr <<= 5;//0地址     for(i = 0;i < 3;i++)    {      write_bit(BIT7);      DATA <<= 1;    }                   }    /*************************************************/    void write_password(uchar data *data p)    {    uchar i,j;        for(i = 0;i < 4;i++)//     {             DATA = *(p++);      for(j = 0;j < 8;j++)      {       write_bit(BIT0);       DATA >>= 1;      }    }        }   /*************************************************/   void main()    {    initial();    TI = RI = 0;    ES = 1;    EA = 1;  delay_2(28);   //f_readcard();     while(1) {   f_readcard();      //读卡   f_writecard(command1);  //写卡    f_clearpassword();   //清除密码     f_changepassword();    //修改密码 } }

    标签: 12345

    上传时间: 2017-10-20

    上传用户:my_lcs

  • 台达变频器

    台达变频器说明书,此说明书主要用于台达B型变频器调试参数

    标签: 台达变频器

    上传时间: 2017-12-31

    上传用户:wshaoheng

  • 28335源码

    30KW三相并网逆变DSP28335源码 

    标签: 28335 源码

    上传时间: 2018-09-14

    上传用户:acer77e

  • 第三代半导体GaN功率开关器件的发展现状及面临的挑战

    作者:何亮,刘扬论文摘要:氮 化 镓 (G a N )材 料 具 有 优 异 的 物 理 特 性 ,非 常 适 合 于 制 作 高 温 、高 速 和 大 功 率 电 子 器 件 ,具 有 十 分 广 阔 的 市场前景 。 S i衬 底 上 G a N 基 功 率 开 关 器 件 是 目 前 的 主 流 技 术 路 线 ,其 中 结 型 栅 结 构 (p 型 栅 )和 共 源 共 栅 级 联 结 构 (C asco de)的 常 关 型 器 件 已 经 逐 步 实 现 产 业 化 ,并 在 通 用 电 源 及 光 伏 逆 变 等 领 域 得 到 应 用 。但 是 鉴 于 以 上 两 种 器 件 结 构 存 在 的 缺 点 ,业 界 更 加 期 待 能 更 充 分 发 挥 G a N 性能的 “ 真 ” 常 关 M 0 S F E T 器件。而 GaN M 0 S F E T 器件的全面实用 化 ,仍 然 面 临 着 在 材 料 外 延 方 面 和 器 件 稳 定 性 方 面 的 挑 战 。

    标签: 第三代半导体 GaN 功率开关器件

    上传时间: 2021-12-08

    上传用户:XuVshu

  • 基于DSP28035的高速永磁无刷直流电机驱动系统

    基于DSP28035的高速永磁无刷直流电机驱动系统,包括论文和软硬设计资料。摘要参赛作品为基于DSP28035的高速永磁无刷直流电机驱动系统。该系统以一台额定转速60 krpm的高速永磁无刷直流电机、交错并联的Buck电路以及全桥电路为硬件平台,以DSP28035为控制核心,实现了调压调速功能和基于坐标变换的无位置传感器新技术。为实现该系统要求,本作品充分利用了DSP28035的资源例如:CLA模块,模拟比较器、HPWM模块以及AD转换模块等。AbstractThis work is the drive system for a high speed permanent magnet burshless dc motor based on DSP28035. The hardware platform consists of a BLDC motor(rated speed is 60000rpm), a Buck circuit and an inverter. Under the control of DSP28035, this system can achieve the goal of adjusting the motor’s speed with voltage and the function of sensorless control based on the coordinate transformation. By making full use of resources of the core, such as CLA, analog comparator, HPWM and AD converters, the whole system can meet the requirements.1 引言高速永磁无刷直流电机驱动系统由于基波频率较高(一般在1kHZ以上),利用逆变桥斩波进行调速的控制方式通常会受到开关管开关频率的限制,因此该系统多采用三相全桥前级加Buck电路进承担调压调速的功能,而三相全桥主要承担逻辑换相的功能。然而,传统Buck电路所需电感的体积较大,增加了系统的体积,降低了系统的功率密度。

    标签: dsp28035 直流电机

    上传时间: 2022-05-08

    上传用户:bluedrops

  • 数字式超声波发生器的研制

    在特殊形状物体清洗过程中,超声清洗是一种新型的清洗方法.超声波发生器作为超声清洗电源,是超声波清洗设备的重要组成部分.本文针对超声波发生器研制中存在的关键技术问题,分别对主回路、声学系统谐振频率自动跟踪系统和输出功率控制系统进行研究和设计,并且进行了实验验证与分析.主回路是超声波发生器功率传输系统,它的可靠性对整个系统十分关键.论文主要对EMI滤波电路、APFC、逆变桥、高频脉冲变压器和匹配网络进行研究和设计.在超声波发生器中,声学系统谐振频率自动跟踪技术是保证输出效率的关键因素.论文在分析压电陶瓷换能器在谐振点附近等效电路的基础上,采用相位控制频率调制技术,利用数字锁相环建立了一种新型的包含鉴相、低通滤波、压控振荡器、调节器的动态频率自动跟踪系统,使超声波发生器工作在最佳状态.当被清洗物件放入清洗槽中之后,由于超声波发生器的负载发生了变化,导致其输出功率随之降低.这样就会影响到清洗的效果,为了解决这个问题就必须对输出功率进行控制.本文巧妙的利用了APFC电压反馈网络可以调节输出电压的特性,采用单片机控制数字电位器的方法调节APFC的电压反馈网络的参数,从而达到控制输出功率的目的.在理论分析和电路设计的基础上,研制了一台500W超声波发生器样机.本样机基本实现了声学系统谐频率自动跟踪,显著提高了换能器的转换效率;同时实现了功率控制,降低了超声波发生器功率损耗,减少了体积,增加了输出功率监控,促进了较大功率超声波发生器的发展.

    标签: 超声波发生器

    上传时间: 2022-05-23

    上传用户:aben

  • 基于SG3525脉宽调制器的中频感应加热电源设计

    感应加热技术是20世纪初才开始应用于工业部门的,它通过电磁感应原理和利用涡流对工件进行加热,是制造业和材料加工中的一种重要手段。目前感应加热电源在金属熔炼、铸造、锻造、透热、淬火、弯管、烧结、表面热处理、钎焊以及晶体生长等行业得到了广泛的应用。随着微机技术和IGBT器件的发展,新型中频感应加热电源成为研究的重点。  本文以中频串联谐振感应加热电源为研究对象,采用单片机C8051f300和脉冲输出芯片SG3525相结合的方式,增加了IGBT驱动电路的设计和限频保护电路的设计。实现了感应加热电源的数字化控制,为感应加热电源系统的数字化、信息化、智能化提供了优质、可靠的技术基础。  论文先介绍了感应加热电源的基本原理以及感应加热技术的发展动态。针对30kW/10kHz-30kHz中频感应加热电源的主电路和控制电路进行了设计,然后通过对感应加热电源中的主电路拓扑结构进行分析,比较串联谐振逆变电路与并联谐振逆变电路的优缺点,选择了更适合中频感应加热电源的串联谐振逆变电路。在确定了设计方案后,详细分析了电源的主电路结构并进行了系统各组成部分器件的参数计算和选取。  论文在分析和对比了感应加热电源的各种调功方式后,选择了PWM调功对感应加热电源进行恒流调节。论文是以单片机80C51f330为控制核心的硬件控制平台,包括频率、占空比可调并通过数码管显示、保护电路、驱动电路、显示电路等外围电路。在此基础上编写了相应的程序,完成了样机,并进行了整机调试,可以达到顺利加热。  通过实测波形的分析,实验限频电路可以很好的使电源工作在感性状态,驱动电路的驱动能力很好,增加了系统的安全性。系统硬件电路可靠,程序运行良好。

    标签: 脉宽调制 sg3525 IGBT驱动电路

    上传时间: 2022-05-30

    上传用户: