虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

实时<b>接收</b>

  • 基于FPGA的多路E1反向复用传输芯片的设计与实现

    随着电信数据传输对速率和带宽的要求变得越来越迫切,原有建成的网络是基于话音传输业务的网络,已不能适应当前的需求.而建设新的宽带网络需要相当大的投资且建设工期长,无法满足特定客户对高速数据传输的近期需求.反向复用技术是把一个单一的高速数据流在发送端拆散并放在两个或者多个低速数据链路上进行传输,在接收端再还原为高速数据流.该文提出一种基于FPGA的多路E1反向复用传输芯片的设计方案,使用四个E1构成高速数据的透明传输通道,支持E1线路间最大相对延迟64ms,通过链路容量调整机制,可以动态添加或删除某条E1链路,实现灵活、高效的利用现有网络实现视频、数据等高速数据的传输,能够节省带宽资源,降低成本,满足客户的需求.系统分为发送和接收两部分.发送电路实现四路E1的成帧操作,数据拆分采用线路循环与帧间插相结合的方法,A路插满一帧(30时隙)后,转入B路E1间插数据,依此类推,循环间插所有的数据.接收电路进行HDB3解码,帧同步定位(子帧同步和复帧同步),线路延迟判断,FIFO和SDRAM实现多路数据的对齐,最后按照约定的高速数据流的帧格式输出数据.整个数字电路采用Verilog硬件描述语言设计,通过前仿真和后仿真的验证.以30万门的FPGA器件作为硬件实现,经过综合和布线,特别是写约束和增量布线手动调整电路的布局,降低关键路径延时,最终满足设计要求.

    标签: FPGA 多路 传输 片的设计

    上传时间: 2013-07-16

    上传用户:asdkin

  • 基于DSP和FPGA的运动控制技术的研究

    该课题通过对开放式数控技术的全面调研和对运动控制技术的深入研究,并针对国内运动控制技术的研究起步较晚的现状,结合激光雕刻领域的具体需要,紧跟当前运动控制技术研究的发展趋势,吸收了世界开放式数控技术和相关运动控制技术的最新成果,采纳了基于DSP和FPGA的方案,研制了一款比较新颖的、功能强大的、具有很大柔性的四轴多功能运动控制卡.该论文主要内容如下:首先,通过对制造业、开放式数控系统、运动控制卡等行业现状的全面调研,基于对运动系统控制技术的深入学习,在比较了几种常用的运动控制方案的基础上,确定了基于DSP和FPGA的运动控制设计方案,并规划了板卡的总体结构.其次,针对运动控制中的一些具体问题,如高速、高精度、运动平稳性、实时控制以及多轴联动等,在FPGA上设计了功能相互独立的四轴运动控制电路,仔细规划并定义了各个寄存器的具体功能,设计了功能完善的加/减速控制电路、变频分配电路、倍频分频电路和三个功能各异的计数器电路等,完全实现了S-曲线升降速运动、自动降速点运动、A/B相编码器倍频计数电路等特殊功能.再次,介绍了DSP在运动控制中的作用,合理规划了DSP指令的形成过程,并对DSP软件的具体实现进行了框架性的设计.然后,根据光电隔离原理设计了数字输入/输出电路;结合DAC原理设计了四路模拟输出电路;实现了PCI接口电路的设计;并针对常见的干扰现象,提出了有效的抗干扰措施.最后,利用运动控制卡强大的运动控制功能,并针对激光雕刻行业进行大幅图形扫描时需要实时处理大量的图形数据的特别需要,在板卡第四轴完全实现了激光控制功能,并基于FPGA内部的16KBit块RAM,开辟了大量数据区以便进行大幅图形的实时处理.

    标签: FPGA DSP 运动控制

    上传时间: 2013-06-09

    上传用户:youlongjian0

  • 基于FPGA的高速实时数字存储示波器

    数字存储示波器(DSO)上世纪八十年代开始出现,由于当时它的带宽和分辨率较低,实时性较差,没有具备模拟示波器的某些特点,因此并没有受到人们的重视。随着数字电路、大规模集成电路及微处理器技术的发展,尤其是高速模/数(A/D)转换器及半导体存储器(RAM)的发展,数字存储示波器的采样速率和实时性能得到了很大的提高,在工程测量中,越来越多的工程师用DSO来替代模拟示波器。 本文介绍了一款双通道采样速率达1GHz,分辨率为8Bits,实时带宽为200MHz数字存储示波器的研制。通过对具体功能和技术指标的分析,提出了FPGA+ARM架构的技术方案。然后,本文分模块详细叙述了整机系统中部分模块,包括前端高速A/D转换器和FPGA的硬件模块设计,数据处理模块软件的设计,以及DSO的GPIB扩展接口逻辑模块的设计。 本文在分析了传统DSO架构的基础上,提出了本系统的设计思想和实现方案。在高速A/D选择上,国家半导体公司2005年推出的双通道采样速率达500MHz高速A/D转换器芯片ADC08D500,利用其双边沿采样模式(DES)实现对单通道1GHz的采样速率,并且用Xilinx公司Spraten-3E系列FPGA作为数据缓冲单元和存储单元,提高了系统的集成度和稳定性。其中,FPGA缓冲单元完成对不同时基情况下多通道数据的抽取,处理单元完成对数据正弦内插的计算,而DSO中其余数据处理功能包括数字滤波和FFT设计在后端的ARM内完成。DSO中常用的GPIB接口放在FPGA内集成,不仅充分利用了FPGA内丰富的逻辑资源,而且降低了整机成本,也减少了电路规模。 最后,利用ChipscopePro工具对采样系统进行调试,并分析了数据中的坏数据产生的原因,提出了解决方案, 并给出了FPGA接收高速A/D的正确数据。

    标签: FPGA 高速实时数 字存储 示波器

    上传时间: 2013-07-07

    上传用户:asdkin

  • 基于FPGA的JPEG实时图像编解码系统

    JPEG是联合图像专家组(Joint Picture Expert Group)的英文缩写,是国际标准化组织(ISO)和CCITT联合制定的静态图像压缩编码标准。JPEG的基于DCT变换有损压缩具有高压缩比特点,被广泛应用在数据量极大的多媒体以及带宽资源宝贵的网络程序中。 动态图像的JPEG编解码处理要求图像恢复质量高、实时性强,本课题就是针对这两个方面的要求展开的研究。该系统由图像编码服务器端和图像解码客户端组成。其中,服务器端实时采集摄像头传送的动态图像,进行JPEG编码,通过网络传送码流到客户端;客户端接收码流,经过JPEG解码,恢复出原始图像送VGA显示。设计结果完全达到了实时性的要求。 本文从系统实现的角度出发,首先分析了系统开发平台,介绍FPGA的结构特点以及它的设计流程和指导原则;然后从JPEG图像压缩技术发展的历程出发,分析JPEG标准实现高压缩比高质量图像处理的原理;针对FPGA在算法实现上的特点,以及JPEG算法处理的原理,按照编码和解码顺序,研究设计了基于改进的DA算法的FDCT和IDCT变换,以及按发生频率进行优化的霍夫曼查找表结构,并且从系统整体上对JPEG编解码进行简化,以提高系统的处理性能。最后,通过分析Nios嵌入式微处理器可定制特性,根据SOPC Builder中Avalon总线的要求,把图像采集,JPEG图像压缩和网络传输转变成用户自定义模块,在SOPC Builder下把用户自定义模块添加到系统中,由Nios嵌入式软核的控制下运行,在FPGA芯片上实现整个JPEG实时图像编解码系统(soc)。 在FPGA上实现硬件模块化的JPEG算法,具有造价低功耗低,性能稳定,图像恢复后质量高等优点,适用于精度要求高且需要对图像进行逐帧处理的远程微小目标识别和跟踪系统中以及广电系统中前期的非线性编辑工作以及数字电影的动画特技制作,对降低成本和提高图像处理速度两方面都有非常重大的现实意义。通过在FPGA上实现JPEG编解码,进一步探索FPGA在数字图像处理上的优势所在,深入了解进行此类硬件模块设计的技术特点,是本课题的重要学术意义所在。

    标签: FPGA JPEG 实时图像 编解码

    上传时间: 2013-04-24

    上传用户:shangdafreya

  • 深入浅出ARM7-LPC213x214x下册B

    北京航空航天大学出版社,深入浅出ARM7--LPC213x214x下册,周立功等编著。本书全面介绍了以LPC213x/LPC214x两个系列ARM芯片为硬件平台的各种应用开发,详细分析了嵌入式实时操作系统μC/OS-II在ARM7上的移植和应用。第101-180页。

    标签: ARM 213 214 LPC

    上传时间: 2013-06-11

    上传用户:tianjinfan

  • 基于FPGA的实时数字化光纤传输方案

    为了满足复杂环境下系统实时控制和高隔离性能的要求,论文提出了一种新颖的数字化光纤传输方案,先将模拟信号数字化,再进行数据处理,使信号能够通过光纤进行传输,最后在光纤接收端将有效数字信号提取出来,供后续电路使用...

    标签: FPGA 实时数字 光纤传输 方案

    上传时间: 2013-07-03

    上传用户:Altman

  • 无功功率自动补偿控制器

    1) 全数字化设计,交流采样,人机界面采用大屏幕点阵图形128X64 LCD中文液晶显示器。 2) 可实时显示A、B、C各相功率因数、电压、电流、有功功率、无功功率、电压总谐波畸变率、电流总谐波畸变率、电压3、5、7、9、11、13次谐波畸变率、电流3、5、7、9、 11、13次谐波畸变率频率、频率、电容输出显示及投切状态、报警等信息。 3) 设置参数中文提示,数字输入。 4) 电容器控制方案支持三相补偿、分相补偿、混合补偿方案,可通过菜单操作进行设置。 5) 电容器投切控制程序支持等容/编码(1:2、 1:2:3、 1:2:4:8…)等投切方式。 6) 具有手动补偿/自动补偿两种工作方式。 7) 提供电平控制输出接口(+12V),动态响应优于20MS。 8) 取样物理量为无功功率,具有谐波测量及保护功能。 9) 控制器具有RS-485通讯接口,MODBUS标准现场总线协议,方便接入低压配电系统。

    标签: 无功功率 控制器 自动补偿

    上传时间: 2013-11-09

    上传用户:dancnc

  • 8阶开关电容滤波器MAX29X系列的应用设计

    MAX29X是美国MAXIM公司生瓣的8阶开关电容低通滤波器,由于价格便宜、使用方便、设计简单,在通讯、信号自理等领域得到了广泛的应用。本文就其工作原理、电气参数、设计注意事项等问题作了讨论,具有一定的实用参考价值。关键词:开关电容、滤波器、设计 1 引言     开关电容滤波器在近些年得到了迅速的发展,世界上一些知名的半导体厂家相继推出了自己的开头电容滤波器集成电路,使形状电容滤波器的发展上了一个新台阶。     MAXIM公司在模拟器件生产领域颇具影响,它生产MAX291/292/293/294/295/296/297系列8阶低通开关电容滤波器由于使用方便(基本上不需外接元件)、设计简单(频率响应函数是固定的,只需确定其拐角频率即截止频率)、尺寸小(有8-pin    DIP封装)等优点,在ADC的反混叠滤波、噪声分析、电源噪声抑制等领域得到了广泛的应用。     MAX219/295为巴特活思(型滤波器,在通频带内,它的增益最稳定,波动小,主要用于仪表测量等要求整个通频带内增益恒定的场合。MAX292/296为贝塞尔(Bessel)滤波器,在通频带内它的群时延时恒定的,相位对频率呈线性关系,因此脉冲信号通过MAX292/296之后尖峰幅度小,稳定速度快。由于脉冲信号通过贝塞尔滤波器之后所有频率分量的延迟时间是相同的,故可保证波形基本不变。关于巴特活和贝塞尔滤波器的特性可能图1来说明。图1的踪迹A为加到滤波器输入端的3kHz的脉冲,这里我们把滤波器的截止频率设为10kHZ。踪迹B通过MAX292/296后的波形。从图中可以看出,由于MAX292/296在通带内具有线性相位特性,输出波形基本上保持了方波形状,只是边沿处变圆了一些。方波通过MAX291/295之后,由于不同频率的信号产生的时延不同,输出波形中就出现了尖峰(overshoot)和铃流(ringing)。     MAX293/294/297为8阶圆型(Elliptic)滤波器,它的滚降速度快,从通频带到阻带的过渡带可以作得很窄。在椭圆型滤波器中,第一个传输零点后输出将随频率的变高而增大,直到第二个零点处。这样几番重复就使阻事宾频响呈现波浪形,如图2所示。阻带从fS起算起,高于频率fS处的增益不会超过fS处的增益。在椭圆型滤波中,通频带内的增益存在一定范围的波动。椭圆型滤波器的一个重要参数就是过渡比。过渡比定义为阻带频率fS与拐角频率(有时也等同为截止频率)由时钟频率确定。时钟既可以是外接的时钟,也可以是自己的内部时钟。使用内部时钟时只需外接一个定时用的电容既可。     在MAX29X系列滤波器集成电路中,除了滤波器电路外还有一个独立的运算放大器(其反相输入端已在内部接地)。用这个运算放大器可以组成配合MAX29X系列滤波器使用后的滤波、反混滤波等连续时间低通滤波器。     下面归纳一下它们的特点:     ●全部为8阶低通滤波器。MAX291/MAX295为巴特沃思滤波器;MAX292/296为贝塞尔滤波器;MAX293/294/297为椭圆滤波器。     ●通过调整时钟,截止频率的调整范围为:0.1Hz~25kHz(MAX291/292/293*294);0.1Hz~kHz(MAX295/296/297)。     ●既可用外部时钟也可用内部时钟作为截止频率的控制时钟。     ●时钟频率和截止频率的比率:10∶1(MAX291/292/293/294);50∶1(MAX295/296/297)。     ●既可用单+5V电源供电也可用±5V双电源供电。     ●有一个独立的运算放大器可用于其它应用目的。     ●8-pin DIP、8-pin SO和宽SO-16多种封装。2 管脚排列和主要电气参数     MAX29X系列开头电容滤波器的管脚排列如图3所示。     管脚功能定义如下:     CLK:时钟输入。     OP OUT:独立运放的输出端。     OP INT:独立运放的同相输入端。     OUT:滤波器输出。     IN:滤波器输入。     V-:负电源 。双电源供电时搛-2.375~-5.5V之间的电压,单电源供电时V--=-V。     V+:正电源。双电源供电时V+=+2.35~+5.5V,单电源供电时V+=+4.75~+11.0V。     GND:地线。单电源工作时GND端必须用电源电压的一半作偏置电压。     NC:空脚,无连线。     MAX29X的极限电气参数如下:     电源(V+~V-):12V     输入电压(任意脚):V--0.3V≤VIN≤V++0.3V     连续工作时的功耗:8脚塑封DIP:727mW;8脚SO:471mW;16脚宽SO:762mW;8脚瓷封DIP:640mW。     工作温度范围:MAX29-C-:0℃~+70℃;MAX29-E-:-40℃~+85℃;MAX29-MJA:-55℃~+125℃;保存温度范围:-65℃~+160℃;焊接温度(10秒):+300℃;     大多数的形状电容滤波器都采用四节级连结构,每一节包含两个滤波器极点。这种方法的特点就是易于设计。但采用这种方法设计出来的滤波器的特性对所用元件的元件值偏差很敏感。基于以上考虑,MAX29X系列用带有相加和比例功能的开关电容持了梯形无源滤波器,这种方法保持了梯形无源滤波器的优点,在这种结构中每个元件的影响作用是对于整个频率响应曲线的,某元件值的误差将会分散到所有的极点,因此不值像四节级连结构那样对某一个极点特别明显的影响。3 MAX29X的频率特性     MAX29X的频率特性如图4所示。图中的fs都假定为1kHz。4 设计考虑     下面对MAX29X系列形状电容滤波器的使用做些讨论。4.1 时钟信号     MAX29X系列开头电容滤波器推荐使用的时钟信号最高频率为2.5MHz。根据对应的时钟频率和拐角频率的比值,MAX291/MAX292/MAX293/MAX294的拐角频率最高为25kHz.MAX295/MAX296/MAX297的拐角频率最高为50kHz 。     MAX29X系列开关电容滤波器的时钟信号既可幅外部时钟直接驱动也可由内部振荡器产生。使用外部时钟时,无论是采用单电源供电还是双电源供电,CLK可直接和采用+5V供电的CMOS时钟信号发生器的输出相连。通过调整外部时钟的频率,可完成滤波器拐角的实时调整。     当使用内部时钟时,振荡器的频率由接在CLK端上的电容VCOSC决定:     fCOSC (kHz)=105/3COSC (pF) 4.2 供电     MAX29X系列开关电容滤波器既可用单电源工作也可用双电源工作。双电源供电时的电源电压范围为±2.375~±5.5V。在实际电路中一般要在正负电源和GND之间接一旁路电容。     当采用单电源供电时,V-端接地,而GND端要通过电阻分压获得一个电压参考,该电压参考的电压值为1/2的电源电压,参见图5。4.3 输入信号幅度范围限制     MAX29X允许的输入信号的最大范围为V--0.3V~V++0.3V。一般情况下在+5V单电源供电时输入信号范围取1V~4V,±5V双电源供电时,输入信号幅度范围取±4V。如果输入信号超过此范围,总谐波失真THD和噪声就大大增加;同样如果输入信号幅度过小(VP-P<1V),也会造成THD和噪声的增加。4.4 独立运算放大器的用法     MAX29X中都设计有一个独立的运算放大器,这个放大器和滤波器的实现无直接关系,用这个放大器可组成一个一阶和二阶滤波器,用于实现MAX29X之前的反混叠滤波功能鄞MAX29X之后的时钟噪声抑制功能。这个运算放大器的反相端已在内部和GND相连。     图6是用该独立运放组成的2阶低通滤波器的电路,它的拐角频率为10kHz,输入阻抗为22Ω,可满足MAX29X形状电容滤波器的最小负载要求(MAX29X的输出负载要求不小于20kΩ)可以通过改变R1、R2、R3、C1、C2的元件值改变拐角频率。具体的元件值和拐角频率的对应关系参见表1。

    标签: 29X MAX 29 8阶

    上传时间: 2013-10-18

    上传用户:macarco

  • MCS-51系列单片机实用接口技术

    本书全面、系统地介绍了MCS-51系列单片机应用系统的各种实用接口技术及其配置。   内容包括:MCS-51系列单片机组成原理:应用系统扩展、开发与调试;键盘输入接口的设计及调试;打印机和显示器接口及设计实例;模拟输入通道接口技术;A/D、D/A、接口技术及在控制系统中的应用设计;V/F转换器接口技术、串行通讯接口技术以及其它与应用系统设计有关的实用技术等。   本书是为满足广大科技工作者从事单片机应用系统软件、硬件设计的需要而编写的,具有内容新颖、实用、全面的特色。所有的接口设计都包括详细的设计步骤、硬件线路图及故障分析,并附有测试程序清单。书中大部分接口软、硬件设计实例都是作者多年来从事单片机应用和开发工作的经验总结,实用性和工程性较强,尤其是对应用系统中必备的键盘、显示器、打印机、A/D、D/A通讯接口设计、模拟信号处理及开发系统应用举例甚多,目的是让将要开始和正在从事单片机应用开发的科研人员根据自己的实际需要来选择应用,一书在手即可基本完成单片机应用系统的开发工作。   本书主要面向从事单片机应用开发工作的广大工程技术人员,也可作为大专院校有关专业的教材或教学参考书。 第一章MCS-51系列单片机组成原理   1.1概述   1.1.1单片机主流产品系列   1.1.2单片机芯片技术的发展概况   1.1.3单片机的应用领域   1.2MCS-51单片机硬件结构   1.2.1MCS-51单片机硬件结构的特点   1.2.2MCS-51单片机的引脚描述及片外总线结构   1.2.3MCS-51片内总体结构   1.2.4MCS-51单片机中央处理器及其振荡器、时钟电路和CPU时序   1.2.5MCS-51单片机的复位状态及几种复位电路设计   1.2.6存储器、特殊功能寄存器及位地址空间   1.2.7输入/输出(I/O)口   1.3MCS-51单片机指令系统分析   1.3.1指令系统的寻址方式   1.3.2指令系统的使用要点   1.3.3指令系统分类总结   1.4串行接口与定时/计数器   1.4.1串行接口简介   1.4.2定时器/计数器的结构   1.4.3定时器/计数器的四种工作模式   1.4.4定时器/计数器对输入信号的要求   1.4.5定时器/计数器的编程和应用   1.5中断系统   1.5.1中断请求源   1.5.2中断控制   1.5.3中断的响应过程   1.5.4外部中断的响应时间   1.5.5外部中断方式的选择   第二章MCS-51单片机系统扩展   2.1概述   2.2程序存贮器的扩展   2.2.1外部程序存贮器的扩展原理及时序   2.2.2地址锁存器   2.2.3EPROM扩展电路   2.2.4EEPROM扩展电路   2.3外部数据存贮器的扩展   2.3.1外部数据存贮器的扩展方法及时序   2.3.2静态RAM扩展   2.3.3动态RAM扩展   2.4外部I/O口的扩展   2.4.1I/O口扩展概述   2.4.2I/O口地址译码技术   2.4.38255A可编程并行I/O扩展接口   2.4.48155/8156可编程并行I/O扩展接口   2.4.58243并行I/O扩展接口   2.4.6用TTL芯片扩展I/O接口   2.4.7用串行口扩展I/O接口   2.4.8中断系统扩展   第三章MCS-51单片机应用系统的开发   3.1单片机应用系统的设计   3.1.1设计前的准备工作   3.1.2应用系统的硬件设计   3.1.3应用系统的软件设计   3.1.4应用系统的抗干扰设计   3.2单片机应用系统的开发   3.2.1仿真系统的功能   3.2.2开发手段的选择   3.2.3应用系统的开发过程   3.3SICE—IV型单片机仿真器   3.3.1SICE-IV仿真器系统结构   3.3.2SICE-IV的仿真特性和软件功能   3.3.3SICE-IV与主机和终端的连接使用方法   3.4KHK-ICE-51单片机仿真开发系统   3.4.1KHK—ICE-51仿真器系统结构   3.4.2仿真器系统功能特点   3.4.3KHK-ICE-51仿真系统的安装及其使用   3.5单片机应用系统的调试   3.5.1应用系统联机前的静态调试   3.5.2外部数据存储器RAM的测试   3.5.3程序存储器的调试   3.5.4输出功能模块调试   3.5.5可编程I/O接口芯片的调试   3.5.6外部中断和定时器中断的调试   3.6用户程序的编辑、汇编、调试、固化及运行   3.6.1源程序的编辑   3.6.2源程序的汇编   3.6.3用户程序的调试   3.6.4用户程序的固化   3.6.5用户程序的运行   第四章键盘及其接口技术   4.1键盘输入应解决的问题   4.1.1键盘输入的特点   4.1.2按键的确认   4.1.3消除按键抖动的措施   4.2独立式按键接口设计   4.3矩阵式键盘接口设计   4.3.1矩阵键盘工作原理   4.3.2按键的识别方法   4.3.3键盘的编码   4.3.4键盘工作方式   4.3.5矩阵键盘接口实例及编程要点   4.3.6双功能及多功能键设计   4.3.7键盘处理中的特殊问题一重键和连击   4.48279键盘、显示器接口芯片及应用   4.4.18279的组成和基本工作原理   4.4.28279管脚、引线及功能说明   4.4.38279编程   4.4.48279键盘接口实例   4.5功能开关及拨码盘接口设计   第五章显示器接口设计   5.1LED显示器   5.1.1LED段显示器结构与原理   5.1.2LED显示器及显示方式   5.1.3LED显示器接口实例   5.1.4LED显示器驱动技术   5.2单片机应用系统中典型键盘、显示接口技术   5.2.1用8255和串行口扩展的键盘、显示器电路   5.2.2由锁存器组成的键盘、显示器接口电路   5.2.3由8155构成的键盘、显示器接口电路   5.2.4用8279组成的显示器实例   5.3液晶显示LCD   5.3.1LCD的基本结构及工作原理   5.3.2LCD的驱动方式   5.3.34位LCD静态驱动芯片ICM7211系列简介   5.3.4点阵式液晶显示控制器HD61830介绍   5.3.5点阵式液晶显示模块介绍   5.4荧光管显示   5.5LED大屏幕显示器   第六章打印机接口设计   6.1打印机简介   6.1.1打印机的基本知识   6.1.2打印机的电路构成   6.1.3打印机的接口信号   6.1.4打印机的打印命令   6.2TPμP-40A微打与单片机接口设计   6.2.1TPμP系列微型打印机简介   6.2.2TPμP-40A打印功能及接口信号   6.2.3TPμP-40A工作方式及打印命令   6.2.48031与TPμP-40A的接口   6.2.5打印编程实例   6.3XLF微型打印机与单片机接口设计   6.3.1XLF微打简介   6.3.2XLF微打接口信号及与8031接口设计   6.3.3XLF微打控制命令   6.3.4打印机编程   6.4标准宽行打印机与8031接口设计   6.4.1TH3070接口引脚信号及时序   6.4.2与8031的简单接口   6.4.3通过打印机适配器完成8031与打印机的接口   6.4.4对打印机的编程   第七章模拟输入通道接口技术   7.1传感器   7.1.1传感器的分类   7.1.2温度传感器   7.1.3光电传感器   7.1.4湿度传感器   7.1.5其他传感器   7.2模拟信号放大技术   7.2.1基本放大器电路   7.2.2集成运算放大器   7.2.3常用运算放大器及应用举例   7.2.4测量放大器   7.2.5程控增益放大器   7.2.6隔离放大器   7.3多通道模拟信号输入技术   7.3.1多路开关   7.3.2常用多路开关   7.3.3模拟多路开关   7.3.4常用模拟多路开关   7.3.5多路模拟开关应用举例   7.3.6多路开关的选用   7.4采样/保持电路设计   7.4.1采样/保持原理   7.4.2集成采样/保持器   7.4.3常用集成采样/保持器   7.4.4采样保持器的应用举例   7.5有源滤波器的设计   7.5.1滤波器分类   7.5.2有源滤波器的设计   7.5.3常用有源滤波器设计举例   7.5.4集成有源滤波器   第八章D/A转换器与MCS-51单片机的接口设计与实践   8.1D/A转换器的基本原理及主要技术指标   8.1.1D/A转换器的基本原理与分类   8.1.2D/A转换器的主要技术指标   8.2D/A转换器件选择指南   8.2.1集成D/A转换芯片介绍   8.2.2D/A转换器的选择要点及选择指南表   8.2.3D/A转换器接口设计的几点实用技术   8.38位D/A转换器DAC080/0831/0832与MCS-51单片机的接口设计   8.3.1DAC0830/0831/0832的应用特性与引脚功能   8.3.2DAC0830/0831/0832与8031单片机的接口设计   8.3.3DAC0830/0831/0832的调试说明   8.3.4DAC0830/0831/0832应用举例   8.48位D/A转换器AD558与MCS-51单片机的接口设计   8.4.1AD558的应用特性与引脚功能   8.4.2AD558与8031单片机的接口及调试说明   8.4.38位D/A转换器DAC0800系列与8031单片机的接口   8.510位D/A转换器AD7522与MCS-51的硬件接口设计   8.5.1AD7522的应用特性及引脚功能   8.5.2AD7522与8031单片机的接口设计   8.610位D/A转换器AD7520/7530/7533与MCS一51单片机的接口设计   8.6.1AD7520/7530/7533的应用特性与引脚功能   8.6.2AD7520系列与8031单片机的接口   8.6.3DAC1020/DAC1220/AD7521系列D/A转换器接口设计   8.712位D/A转换器DAC1208/1209/1210与MCS-51单片机的接口设计   8.7.1DAC1208/1209/1210的内部结构与引脚功能   8.7.2DAC1208/1209/1210与8031单片机的接口设计   8.7.312位D/A转换器DAC1230/1231/1232的应用设计说明   8.7.412位D/A转换器AD7542与8031单片机的接口设计   8.812位串行DAC-AD7543与MCS-51单片机的接口设计   8.8.1AD7543的应用特性与引脚功能   8.8.2AD7543与8031单片机的接口设计   8.914位D/A转换器AD75335与MCS-51单片机的接口设计   8.9.1AD8635的内部结构与引脚功能   8.9.2AD7535与8031单片机的接口设计   8.1016位D/A转换器AD1147/1148与MCS-51单片机的接口设计   8.10.1AD1147/AD1148的内部结构及引脚功能   8.10.2AD1147/AD1148与8031单片机的接口设计   8.10.3AD1147/AD1148接口电路的应用调试说明   8.10.416位D/A转换器AD1145与8031单片机的接口设计   第九章A/D转换器与MCS-51单片机的接口设计与实践   9.1A/D转换器的基本原理及主要技术指标   9.1.1A/D转换器的基本原理与分类   9.1.2A/D转换器的主要技术指标   9.2面对课题如何选择A/D转换器件   9.2.1常用A/D转换器简介   9.2.2A/D转换器的选择要点及应用设计的几点实用技术   9.38位D/A转换器ADC0801/0802/0803/0804/0805与MCS-51单片机的接口设计   9.3.1ADC0801~ADC0805芯片的引脚功能及应用特性   9.3.2ADC0801~ADC0805与8031单片机的接口设计   9.48路8位A/D转换器ADC0808/0809与MCS一51单片机的接口设计   9.4.1ADC0808/0809的内部结构及引脚功能   9.4.2ADC0808/0809与8031单片机的接口设计   9.4.3接口电路设计中的几点注意事项   9.4.416路8位A/D转换器ADC0816/0817与MCS-51单片机的接口设计   9.510位A/D转换器AD571与MCS-51单片机的接口设计   9.5.1AD571芯片的引脚功能及应用特性   9.5.2AD571与8031单片机的接口   9.5.38位A/D转换器AD570与8031单片机的硬件接口   9.612位A/D转换器ADC1210/1211与MCS-51单片机的接口设计   9.6.1ADC1210/1211的引脚功能与应用特性   9.6.2ADC1210/1211与8031单片机的硬件接口   9.6.3硬件接口电路的设计要点及几点说明   9.712位A/D转换器AD574A/1374/1674A与MCS-51单片机的接口设计   9.7.1AD574A的内部结构与引脚功能   9.7.2AD574A的应用特性及校准   9.7.3AD574A与8031单片机的硬件接口设计   9.7.4AD574A的应用调试说明   9.7.5AD674A/AD1674与8031单片机的接口设计   9.8高速12位A/D转换器AD578/AD678/AD1678与MCS—51单片机的接口设计   9.8.1AD578的应用特性与引脚功能   9.8.2AD578高速A/D转换器与8031单片机的接口设计   9.8.3AD578高速A/D转换器的应用调试说明   9.8.4AD678/AD1678采样A/D转换器与8031单片机的接口设计   9.914位A/D转换器AD679/1679与MCS-51单片机的接口设计   9.9.1AD679/AD1679的应用特性及引脚功能   9.9.2AD679/1679与8031单片机的接口设计   9.9.3AD679/1679的调试说明   9.1016位ADC-ADC1143与MCS-51单片机的接口设计   9.10.1ADC1143的应用特性及引脚功能   9.10.2ADC1143与8031单片机的接口设计   9.113位半积分A/D转换器5G14433与MCS-51单片机的接口设计   9.11.15G14433的内部结构及引脚功能   9.11.25G14433的外部电路连接与元件参数选择   9.11.35G14433与8031单片机的接口设计   9.11.45G14433的应用举例   9.124位半积分A/D转换器ICL7135与MCS—51单片机的接口设计   9.12.1ICL7135的内部结构及芯片引脚功能   9.12.2ICL7135的外部电路连接与元件参数选择   9.12.3ICL7135与8031单片机的硬件接口设计   9.124ICL7135的应用举例   9.1312位双积分A/D转换器ICL7109与MCS—51单片机的接口设计   9.13.1ICL7109的内部结构与芯片引脚功能   9.13.2ICL7109的外部电路连接与元件参数选择   9.13.3ICL7109与8031单片机的硬件接口设计   9.1416位积分型ADC一ICL7104与MCS-51单片机的接口设计   9.14.1ICL7104的主要应用特性及引脚功能   9.14.2ICL7104与8031单片机的接口设计   9.14.3其它积分型A/D转换器简介   第十章V/F转换器接口技术   10.1V/F转换的特点及应用环境   10.2V/F转换原理及用V/F转换器实现A/D转换的方法   10.2.1V/F转换原理   10.2.2用V/F转换器实现A/D转换的方法   10.3常用V/F转换器简介   10.3.1VFC32   10.3.2LMX31系列V/F转换器   10.3.3AD650   10.3.4AD651   10.4V/F转换应用系统中的通道结构   10.5LM331应用实例   10.5.1线路原理   10.5.2软件设计   10.6AD650应用实例   10.6.1AD650外围电路设计   10.6.2定时/计数器(8253—5简介)   10.6.3线路原理   10.6.4软件设计   第十一章串行通讯接口技术   11.1串行通讯基础   11.1.1异步通讯和同步通讯   11.1.2波特率和接收/发送时钟   11.1.3单工、半双工、全双工通讯方式   11.14信号的调制与解调   11.1.5通讯数据的差错检测和校正   11.1.6串行通讯接口电路UART、USRT和USART   11.2串行通讯总线标准及其接口   11.2.1串行通讯接口   11.2.2RS-232C接口   11.2.3RS-449、RS-422、RS-423及RS485   11.2.420mA电流环路串行接口   11.3MCS-51单片机串行接口   11.3.1串行口的结构   11.3.2串行接口的工作方式   11.3.3串行通讯中波特率设置   11.4MCS-51单片机串行接口通讯技术   11.4.1单片机双机通讯技术   11.4.2单片机多机通讯技术   11.5IBMPC系列机与单片机的通讯技术   11.5.1异步通讯适配器   11.5.2IBM-PC机与8031双机通讯技术   11.5.3IBM—PC机与8031多机通讯技术   11.6MCS-51单片机串行接口的扩展   11.6.1Intel8251A可编程通讯接口   11.6.2扩展多路串行口的硬件设计   11.6.3通讯软件设计   第十二章应用系统设计中的实用技术   12.1MCS-51单片机低功耗系统设计   12.1.1CHMOS型单片机80C31/80C51/87C51的组成与使用要点   12.1.2CHMOS型单片机的空闲、掉电工作方式   12.1.3CHMOS型单片机的I/O接口及应用系统实例   12.1.4HMOS型单片机的节电运行方式   12.2逻辑电平接口技术   12.2.1集电极开路门输出接口   12.2.2TTL、HTL、ECL、CMOS电平转换接口   12.3电压/电流转换   12.3.1电压/0~10mA转换   12.3.2电压1~5V/4~20mA转换   12.3.30~10mA/0~5V转换   12.344~20mA/0~5V转换   12.3.5集成V/I转换电路   12.4开关量输出接口技术   12.4.1输出接口隔离技术   12.4.2低压开关量信号输出技术   12.4.3继电器输出接口技术   12.4.4可控硅(晶闸管)输出接口技术   12.4.5固态继电器输出接口   12.4.6集成功率电子开关输出接口   12.5集成稳压电路   12.5.1电源隔离技术   12.5.2三端集成稳压器   12.5.3高精度电压基准   12.6量程自动转换技术   12.6.1自动转换量程的硬件电路   12.6.2自动转换量程的软件设计   附录AMCS-51单片机指令速查表   附录B常用EPROM固化电压参考表   参考文献

    标签: MCS 51 单片机实用 接口技术

    上传时间: 2013-10-15

    上传用户:himbly

  • MOTOROLA 8位增强型单片机M68HC11原理与应用

    本书分三部分介绍在美国广泛应用的、高功能的M68HC11系列单片机(8位机 ,Motorola公司)。内容包括M68HC11的结构与其基本原理、开发工具EVB(性能评估板)以及开发和应用技术。本书在介绍单片机硬、软件的基础上,进一步介绍了在美国实验室内,如何应用PC机及EVB来进行开发工作。通过本书的介绍,读者可了解这种单片机的原理并学会开发和应用方法。本书可作为大专院校单片机及其实验的教材(本科、短训班)。亦可供开发、应用单片机的各专业(计算机、机电、化工、纺织、冶金、自控、航空、航海……)有关技术人员参考。 第一部分 M68HC11 结构与原理Motorola单片机 1 Motorla单片机 1.1 概述 1.1.1 Motorola 单片机发展概况(3) 1.1.2 Motorola 单片机结构特点(4) 1.2 M68HC11系列单片机(5) 1.2.1 M68HC11产品系列(5) 1.2.2 MC68HC11E9特性(6) 1.2.3 MC68HC11E9单片机引脚说明(8) 1.3 Motorola 32位单片机(14) 1.3.1中央处理器(CPU32)(15) 1.3.2 定时处理器(TPU)(16) 1.3.3 串行队列模块(QSM)(16) 1.3.4 系统集成模块 (SIM)(16) 1.3.5 RAM(17) 2 系统配置与工作方式 2.1 系统配置(19) 2.1.1 配置寄存器CONFIG(19) 2.1.2 CONFIG寄存器的编程与擦除(20) 2?2 工作方式选择(21) 2.3 M68HC11的工作方式(23) 2.3.1 普通单片工作方式(23) 2.3.2 普通扩展工作方式(23) 2.3.3 特殊自举方式(27) 2.3.4 特殊测试方式(28) 3 中央处理器(CPU)与片上存储器 3.1 CPU寄存器(31) 3?1?1 累加器A、B和双累加器D(32) 3.1.2 变址寄存器X、Y(32) 3.1.3 栈指针SP(32) 3.1.4 程序计数器PC(33) 3.1.5 条件码寄存器CCR(33) 3.2 片上存储器(34) 3.2.1 存储器分布(34) 3.2.2 RAM和INIT寄存器(35) 3.2.3 ROM(37) 3.2.4 EEPROM(37) 3.3 M68HC11 CPU的低功耗方式(39) 3.3.1 WAIT方式(39) 3.3.2 STOP方式(40) 4 复位和中断 4.1 复位(41) 4.1.1 M68HC11的系统初始化条件(41) 4.1.2 复位形式(43) 4.2 中断(48) 4.2.1 条件码寄存器CCR中的中断屏蔽位(48) 4.2.2 中断优先级与中断矢量(49) 4.2.3 非屏蔽中断(52) 4.2.4 实时中断(53) 4.2.5 中断处理过程(56) 5 M68HC11指令系统 5.1 M68HC11寻址方式(59) 5.1.1 立即寻址(IMM)(59) 5.1.2 扩展寻址(EXT)(60) 5.1.3 直接寻址(DIR)(60) 5.1.4 变址寻址(INDX、INDY)(61) 5.1.5 固有寻址(INH)(62) 5.1.6 相对寻址(REL)(62) 5.1.7 前置字节(63) 5.2 M68HC11指令系统(63) 5.2.1 累加器和存储器指令(63) 5.2.2 栈和变址寄存器指令(68) 5.2.3 条件码寄存器指令(69) 5.2.4 程序控制指令(70) 6 输入与输出 6.1 概述(73) 6.2 并行I/O口(74) 6.2.1 并行I/O寄存器(74) 6.2.2 应答I/O子系统(76) 6?3 串行通信接口SCI(82) 6.3.1 基本特性(83) 6.3.2 数据格式(83) 6.3.3 SCI硬件结构(84) 6.3.4 SCI寄存器(86) 6.4 串行外围接口SPI(92) 6.4.1 SPI特性(92) 6.4.2 SPI引脚信号(92) 6.4.3 SPI结构(93) 6.4.4 SPI寄存器(95) 6.4.5 SPI系统与外部设备进行串行数据传输(99) 7 定时器系统与脉冲累加器 7.1 概述(105) 7.2 循环计数器(107) 7.2.1 时钟分频器(107) 7.2.2 计算机正常工作监视功能(110) 7.2.3 定时器标志的清除(110) 7.3 输入捕捉功能(111) 7.3.1 概述(111) 7.3.2 定时器输入捕捉锁存器(TIC1、TIC2、TIC3) 7.3.3 输入信号沿检测逻辑(113) 7.3.4 输入捕捉中断(113) 7.4 输出比较功能(114) 7.4.1 概述(114) 7.4.2 输出比较功能使用的寄存器(116) 7.4.3 输出比较示例(118) 7.5 脉冲累加器(119) 7.5.1 概述(119) 7.5.2 脉冲累加器控制和状态寄存器(121) 8 A/D转换系统 8.1 电荷重新分布技术与逐次逼近算法(125) 8.1.1 基本电路(125) 8.1.2 A/D转换逐次逼近算法原理(130) 8.2 M68HC11中A/D转换的实现方法(131) 8.2.1 逐次逼近A/D转换器(131) 8.2.2 控制寄存器(132) 8.2.3 系统控制逻辑(135)? 9 单片机的内部操作 9.1 用立即>    图书前言   美国Motorola公司从80年代中期开始推出的M68HC11系列单片机是当今功能最强、性能/价格比最好的八位单片微计算机之一。在美国,它已被广泛地应用于教学和各种工业控制系统中。?   该单片机有丰富的I/O功能,完善的系统保护功能和软件控制的节电工作方式 。它的指令系统与早期Motorola单片机MC6801等兼容,同时增加了91条新指令。其中包含16位乘法、除法运算指令等。   为便于用户开发和应用M68HC11单片机,Motorola公司提供了多种开发工具。M68HC11 EVB (Evaluation Board)性能评估板就是一种M68HC11系列单片机的廉价开发工具。它既可用来 调试用户程序,又可在仿真方式下运行。为方便用户,M68HC11 EVB可与IBM?PC连接 ,借助于交叉汇编、通信程序等软件,在IBM?PC上调试程序。?   本书分三部分(共15章)介绍了M68HC11的结构和基本原理、开发工具-EVB及开发应用实例等。第一部分(1~9章),介绍M68HC11的结构和基本原理。包括概述,系统配置与工作方式、CPU和存储器、复位和中断、指令系统、I/O、定时器系统和脉冲累加器、A/D转换系统、单片机的内部操作等。第二部分(10~11章),介绍M68HC11 EVB的原理和技术特性以及EVB的应用。第三部分(12~15章),介绍M68HC11的开发与应用技术。包括基本的编程练习、应用程序设计、接口实验、接口设计及应用等。   读者通过学习本书,不仅可了解M68HC11的硬件、软件,而且可了解使用EVB开发和应用M68HC11单片机的方法。在本书的第三部分专门提供了一部分实验和应用程序。?   本书系作者张宁作为高级访问学者,应邀在美国马萨诸塞州洛厄尔大学(University of Massachusetts Lowell)工作期间完成的。全书由张宁执笔。在编著过程中,美国洛厄尔大学的R·代克曼教授?(Professor Robert J. Dirkman)多次与张宁一起讨论、研究,并提供部分资料及实验数据。参加编写和审校等工作的还有王云霞、孙晓芳、刘安鲁、张籍、来安德、张杨等同志。?   为将M68HC11系列单片机尽快介绍给我国,美国Motorola公司的Terrence M.S.Heng先生曾大力支持本书的编著和出版。在此表示衷心感谢。    

    标签: MOTOROLA M68 68 11

    上传时间: 2013-10-27

    上传用户:rlgl123