SPCE061A单片机硬件结构 从第一章中SPCE061A的结构图可以看出SPCE061A的结构比较简单,在芯片内部集成了ICE仿真电路接口、FLASH程序存储器、SRAM数据存储器、通用IO端口、定时器计数器、中断控制、CPU时钟、模-数转换器AD、DAC输出、通用异步串行输入输出接口、串行输入输出接口、低电压监测低电压复位等若干部分。各个部分之间存在着直接或间接的联系,在本章中我们将详细的介绍每个部分结构及应用。2.1 μ’nSP™的内核结构μ’nSP™的内核如0所示其结构。它由总线、算术逻辑运算单元、寄存器组、中断系统及堆栈等部分组成,右边文字为各部分简要说明。算术逻辑运算单元ALUμ’nSP™的ALU在运算能力上很有特色,它不仅能做16位基本的算术逻辑运算,也能做带移位操作的16位算术逻辑运算,同时还能做用于数字信号处理的16位×16位的乘法运算和内积运算。1. 16位算术逻辑运算不失一般性,μ’nSP™与大多数CPU类似,提供了基本的算术运算与逻辑操作指令,加、减、比较、取补、异或、或、与、测试、写入、读出等16位算术逻辑运算及数据传送操作。2. 带移位操作的16位算逻运算对图2.1稍加留意,就会发现μ’nSP™的ALU前面串接有一个移位器SHIFTER,也就是说,操作数在经过ALU的算逻操作前可先进行移位处理,然后再经ALU完成算逻运算操作。移位包括:算术右移、逻辑左移、逻辑右移、循环左移以及循环右移。所以,μ’nSP™的指令系统里专有一组复合式的‘移位算逻操作’指令;此一条指令完成移位和算术逻辑操作两项功能。程序设计者可利用这些复合式的指令,撰写更精简的程序代码,进而增加程序代码密集度 (Code Density)。在微控制器应用中,如何增加程序代码密集度是非常重要的议题;提高程序代码密集度意味着:减少程序代码的大小,进而减少ROM或FLASH的需求,以此降低系统成本与增加执行效能。
上传时间: 2013-10-10
上传用户:星仔
深入浅出AVR单片机思路清晰,以AVR单片机为载体,介绍了初学单片机所必须掌握的专业知识。书中语言严谨但不乏幽默风趣,配以大量的照片、图示和实例程序,使读者在愉悦中完成专业知识的学习,并培养了学习嵌入式系统的兴趣。本书在讲述AVR单片机的同时,更注重于对读者学习和设计能力的启发、培养,帮助他们养成“从实践中来,到实践中去”的科学方法论,为进一步的学习创造了基础。 本书讲述浅显、内容丰富、编排合理、实例详尽。首先介绍了如何阅读器件资料的方法,然后熟悉ICCAVR集成开发环境并搭建实验开发装置,接着从实际应用出发,启发式地介绍AVR单片机的常用资源和对应软件方法,最后较为全面地补充了从事嵌入式系统开发要扩展的软件知识。 第1篇 Are you ready? 第1章 学会阅读Datasheet 1.1 如何阅读PDF文件,如何获得Datasheet文件 1.2 Datasheet告诉我们些什么 1.3 如何看懂AVR的Datasheet 1.4 如何得到帮助 1.5 汇编语言执行时间的计算方法 1.6 ATmega48/88/168常用熔丝的作用及其配置方法 1.7 对误烧写为外部时钟模式的解锁方法 实例1 阅读74HC595 Datasheet 第2章 深入开发环境 2.1 认识ICC编译环境 2.2 事半功倍的代码生成器 2.3 ICC之不得不说的故事 2.4 AVR最小系统和下载线DIY 实例2 AVR最小系统DIY第2篇 Let\'s go! 第3章 从跑马灯开始 3.1 输入/输出界面 3.1.1 单片机的输入/输出设备——引脚 3.1.2 “芯”里有数——数码管显示 3.1.3 单片机的输入/输出设备——从按键到键盘 3.2 用ATmega48/88/168单片机端口驱动数码管 3.3 操纵ATmega48/88/168单片机端口 3.4 端口内建上拉电阻的使用 3.5 端口位操作 实例3 跑马灯 实例4 数码管的显示(上) 实例5 数码管的显示(下) 实例6 矩阵键盘 第4章 对不起接个电话 4.1 十万火急——中断 4.2 中断的特性 4.3 使用中断时的注意事项 4.4 ATmega48/88/168单片机有哪些中断源 4.5 如何编写一个中断的服务程序代码 4.6 ATmega48/88/168单片机中断的开关控制 4.7 ATmega48/88/168中断标志位 4.8 ATmega48/88/168中断优先级 4.9 ATmega48/88/168单片机中断向量 4.10 中断与查询之争 4.11 用查询方式响应外设中断 4.12 中断误触发 4.13 前后台与原子操作 实例7 中断唤醒的键盘扫描 实例8 旋转编码器 第5章 一秒究竟有多长 5.1 单片机与时间 5.2 软件延时 5.3 不需要加载的“自由计时器” 5.4 通过重加载控制定时中断周期 5.5 使用代码生成器生成定时器1初始化代码 5.6 定时器的其他工作模式 5.7 PWM波及其应用简介 5.8 人类能看懂的电子时钟——实时时钟简介 实例9 闪烁的灯 实例10 渐明渐暗的灯 实例11 复杂闪烁控制 第6章 电量低 6.1 从猜数游戏到A/D转换器 6.2 ATmega48/88/168的A/D转换器 6.3 ATmega48/88/168单片机中与A/D相关的引脚 6.4 ATmega48/88/168单片机中与A/D相关的寄存器 6.5 使用A/D时需要注意些什么 6.6 怎样知道A/D转换完成 6.7 读取A/D的转换结果 6.8 使用代码生成器生成ADC初始化代码 6.9 书写具有工程结构的初始化代码 6.10 电量计原理概述 …… 第7章 正在过收费站 第8章 包装的学问 第9章 傻孩子求职记 第10章 MISSION UPDATE第3篇 Code Name C 第11章 朝花夕拾 第12章 指针都是纸老虎 第13章 来自身边的启示 第14章 初识嵌入式系统
上传时间: 2014-05-05
上传用户:佳期如梦
基于中颖SH79F164单片机的电子血压计应用:电子血压计因具有无创性、操作简单、携带方面等优点,目前得到广泛的应用和推广。无创检测血压的方法很多,如柯氏音法,测振法,超声法、双袖带法、恒定袖带法、逐拍跟踪法、张力定测法和恒定容积法等。其中测振法就是我们常说的示波法,由于具有较好的抗干扰能力,能比较可靠地判断血压、实现血压的自动检测而成为无创血压的主流。目前国内外大多数电子血压计都采用示波法。示波法的原理同柯氏音法,也需要充气袖套来阻断动脉流,但在放气过程中不是检测柯氏音,而是检测气袖内气体的振荡波(测振法由此得名),这些振荡波是袖带与动脉耦合的结果,源于心血管周期内血管壁由于收缩舒张引起的压力脉动。理论计算和实践均证明此振荡波的幅度有一定的规律,与动脉收缩压、平均压以及舒张压有一定的函数关系。针对示波法,本文将详细介绍基于中颖电子SH79F164 单片机的血压计系统方案与软硬件实现。 在硬件电路设计方面,笔者参考了大量的资料,最终选定SH79F164 单片机作为主控IC。其理由是SH79F164 内建资源丰富,既能节省大量外围器件,又方便系统调试。SH79F164 内建资源主要有:可编程仪表放大器(PGA)、带通滤波器、固定增益放大器、恒流源放大器、10 位A/D 转换器、时基定时器(RTC)。硬件部分构成:压力传感器、SH79F164 单片机、LCD、袖套、充气泵、放气阀、按键等(见图3)。
上传时间: 2013-10-23
上传用户:muhongqing
多路电压采集系统一、实验目的1.熟悉可编程芯片ADC0809,8253的工作过程,掌握它们的编程方法。2.加深对所学知识的理解并学会应用所学的知识,达到在应用中掌握知识的目的。 二、实验内容与要求1.基本要求通过一个A/D转换器循环采样4路模拟电压,每隔一定时间去采样一次,一次按顺序采样4路信号。A/D转换器芯片AD0809将采样到的模拟信号转换为数字信号,转换完成后,CPU读取数据转换结果,并将结果送入外设即CRT/LED显示,显示包括电压路数和数据值。2. 提高要求 (1) 可以实现循环采集和选择采集2种方式。(2)在CRT上绘制电压变化曲线。 三、实验报告要求 1.设计目的和内容 2.总体设计 3.硬件设计:原理图(接线图)及简要说明 4.软件设计框图及程序清单5.设计结果和体会(包括遇到的问题及解决的方法) 四、总体设计设计思路如下:1) 4路模拟电压信号通过4个电位器提供0-5V的电压信号。2) 选择ADC0809芯片作为A/D转换器,4路输入信号分别接到ADC0809的IN0—IN4通道,每隔一定的时间采样一次,采完一路采集下一路,4路电压循环采集。3) 利用3个LED数码管显示数据,1个数码管用来显示输入电压路数,3个数码管用来显示电压采样值。4) 延时由8253定时/计数器来实现。 五、硬件电路设计根据设计思路,硬件主要利用了微机实验平台上的ADC0809模数转换器、8253定时/计数器以及LED显示输出等模块。电路原理图如下:1.基本接口实验板部分1) 电位计模块,4个电位计输出4路1-5V的电压信号。2) ADC0809模数转换器,将4路电压信号接到IN0-IN3,ADD_A、ADD_B、ADD_C分别接A0、A1、A2,CS_AD接CS0时,4个采样通道对应的地址分别为280H—283H。3) 延时模块,8253和8255组成延时电路。8255的PA0接到8253的OUT0,程序中查询计数是否结束。硬件电路图如图1所示。 图1 基本实验板上的电路图实验板上的LED显示部分实验板上主要用到了LED数码管显示电路,插孔CS1用于数码管段码的输出选通,插孔CS2用于数码管位选信号的输出选通。电路图如图2所示。
上传时间: 2013-11-06
上传用户:sunchao524
当拿到一张CASE单时,首先得确定的是能用什么母体才能实现此功能,然后才能展开对外围硬件电路的设计,因此首先得了解每个母体的基本功能及特点,下面大至的介绍一下本公司常用的IC:单芯片解决方案• SN8P1900 系列– 高精度 16-Bit 模数转换器– 可编程运算放大器 (PGIA)• 信号放大低漂移: 2V• 放大倍数可编程: 1/16/64/128 倍– 升压- 稳压调节器 (Charge-Pump Regulator)• 电源输入: 2.4V ~ 5V• 稳压输出: e.g. 3.8V at SN8P1909– 内置液晶驱动电路 (LCD Driver)– 单芯片解决方案 • 耳温枪 SN8P1909 LQFP 80 Pins• 5000 解析度量测器 SN8P1908 LQFP 64 Pins• 体重计 SN8P1907 SSOP 48 Pins单芯片解决方案• SN8P1820 系列– 精确的12-Bit 模数转换器– 可编程运算放大器 (PGIA)• Gain Stage One: Low Offset 5V, Gain: 16/32/64/128• Gain Stage One: Low Offset 2mV, Gain: 1.3 ~ 2.5– 升压- 稳压调节器• 电源输入: 2.4V ~ 5V• 稳压输出: e.g. 3.8V at SN8P1829– 内置可编程运算放大电路– 内置液晶驱动电路 – 单芯片解决方案 • 电子医疗器 SN8P1829 LQFP 80 Pins 高速/低功耗/高可靠性微控制器• 最新SN8P2000 系列– SN8P2500/2600/2700 系列– 高度抗交流杂讯能力• 标准瞬间电压脉冲群测试 (EFT): IEC 1000-4-4• 杂讯直接灌入芯片电源输入端• 只需添加1颗 2.2F/50V 旁路电容• 测试指标稳超 4000V (欧规)– 高可靠性复位电路保证系统正常运行• 支持外部复位和内部上电复位• 内置1.8V 低电压侦测可靠复位电路• 内置看门狗计时器保证程序跳飞可靠复位– 高抗静电/栓锁效应能力– 芯片工作温度有所提高: -200C ~ 700C 工规芯片温度: -400C ~ 850C 高速/低功耗/高可靠性微控制器• 最新 SN8P2000 系列– SN8P2500/2600/2700 系列– 1T 精简指令级结构• 1T: 一个外部振荡周期执行一条指令• 工作速度可达16 MIPS / 16 MHz Crystal– 工作消耗电流 < 2mA at 1-MIPS/5V– 睡眠模式下消耗电流 < 1A / 5V额外功能• 高速脉宽调制输出 (PWM)– 8-Bit PWM up to 23 KHz at 12 MHz System Clock– 6-Bit PWM up to 93 KHz at 12 MHz System Clock– 4-Bit PWM up to 375 KHz at 12 MHz System Clock• 内置高速16 MHz RC振荡器 (SN8P2501A)• 电压变化唤醒功能• 可编程控制沿触发/中断功能– 上升沿 / 下降沿 / 双沿触发• 串行编程接口
上传时间: 2013-10-21
上传用户:jiahao131
18-2. D/A转换器基本知识18-3. 光导智能小车硬件实现18-4. ADC0832基本应用方法18-5. 光导智能小车软件实现A/D转换器的主要技术指标分辨率 使输出数字量变化一个相邻数码所需输入模拟电压的变化量。常 用二进制的位数表示。 例如:12位ADC的分辨率就是12位,一个10V满刻度的12位ADC能分辨 输入电压变化最小是: 10V×1/212=2.4mV量化误差 ADC把模拟量变为数字量,用数字量近似表示模拟量,这个过程称为量化。量化误差是ADC的有限位数对模拟量进行量化而引起的误差。A/D转换器的主要技术指标偏移误差 指输入信号为零时,输出信号不为零的值,所以有时又称为零值误差。满刻度误差 满刻度误差又称为增益误差。指满刻度输出数码所对应的实际输入电压与理想输入电压之差。线性度 线性度有时又称为非线性度,指转换器实际的转换特性与理想直线的最大偏差。A/D转换器的主要技术指标绝对精度 在一个转换器中,任何数码所对应的实际模拟量输入与理论模拟输入之差的最大值,称为绝对精度。对于ADC而言,可以在每一个阶梯的水平中点进行测量,它包括了所有的误差。转换速率 指ADC能够重复进行数据转换的速度,即每秒转换的次数。而完成一次A/D转换所需的时间(包括稳定时间),则是转换速率的倒数。
上传时间: 2013-11-25
上传用户:banlangen
《现代微机原理与接口技术》实验指导书 TPC-H实验台C语言版 1.实验台结构1)I / O 地址译码电路如上图1所示地址空间280H~2BFH共分8条译码输出线:Y0~Y7 其地址分别是280H~287H、288H~28FH、290H~297H、298H~29FH、2A0H~2A7H、2A8H~2AFH、2B0H~2B7H、2B8H~2BFH,8根译码输出线在实验台I/O地址处分别由自锁紧插孔引出供实验选用(见图2)。 2) 总线插孔采用“自锁紧”插座在标有“总线”区引出数据总线D7~D0;地址总线A9~A0,读、写信号IOR、IOW;中断请求信号IRQ ;DMA请求信号DRQ1;DMA响应信号DACK1 及AEN信号,供学生搭试各种接口实验电路使用。3) 时钟电路如图-3所示可以输出1MHZ 2MHZ两种信号供A/D转换器定时器/计数器串行接口实验使用。图34) 逻辑电平开关电路如图-4所示实验台右下方设有8个开关K7~K0,开关拨到“1”位置时开关断开,输出高电平。向下打到“0”位置时开关接通,输出低电平。电路中串接了保护电阻使接口电路不直接同+5V 、GND相连,可有效地防止因误操作误编程损坏集成电路现象。图 4 图 55) L E D 显示电路如图-5所示实验台上设有8个发光二极管及相关驱动电路(输入端L7~L0),当输入信号为“1” 时发光,为“0”时灭6) 七段数码管显示电路如图-6所示实验台上设有两个共阴极七段数码管及驱动电路,段码为同相驱动器,位码为反相驱动器。从段码与位码的驱动器输入端(段码输入端a、b、c、d、e、f、g、dp,位码输入端s1、 s2)输入不同的代码即可显示不同数字或符号。
上传时间: 2013-11-22
上传用户:sssnaxie
单片机实用接口技术介绍了MCS-51系列单片机应用系统的各种实用接口技术及其配置。内容包括:MCS-51系列单片机组成原理:应用系统扩展、开发与调试;键盘输入接口的设计及调试;打印机和显示器接口及设计实例;模拟输入通道接口技术;A/D、D/A、接口技术及在控制系统中的应用设计;V/F转换器接口技术、串行通讯接口技术以及其它与应用系统设计有关的实用技术等。本书是为满足广大科技工作者从事单片机应用系统软件、硬件设计的需要而编写的,具有内容新颖、实用、全面的特色。所有的接口设计都包括详细的设计步骤、硬件线路图及故障分析,并附有测试程序清单。书中大部分接口软、硬件设计实例都是作者多年来从事单片机应用和开发工作的经验总结,实用性和工程性较强,尤其是对应用系统中必备的键盘、显示器、打印机、A/D、D/A通讯接口设计、模拟信号处理及开发系统应用举例甚多,目的是让将要开始和正在从事单片机应用开发的科研人员根据自己的实际需要来选择应用,一书在手即可基本完成单片机应用系统的开发工作。 MCS-51系列单片机实用接口技术目录 第一章 MCS51系列单片机组成原理第二章 MCS-51单片机系统扩展第三章 MCS-51单片机应用系统的开发第四章 键盘及其按口技术第五章 显示器接口设计第六章 打印机接口设计第七章 模拟输入通道接口技术第八章 D/A转换器与MSC-51单片机的接口设计与实践第九章 A/D转换器与MCS-51单片机的接口设计与实践 第十章 V/F转换器接口技术 第十一章 串行通讯按日技术第十二章应用系统设计中的实用技术附录AMCS51单片机指令速查表附录一常用EPROM固化电压参考表
上传时间: 2013-11-24
上传用户:hfnishi
MCS-51系列单片机实用接口技术全面、系统地介绍了MCS-51系列单片机应用系统的各种实用接口技术及其配置。内容包括:MCS-51系列单片机组成原理:应用系统扩展、开发与调试;键盘输入接口的设计及调试;打印机和显示器接口及设计实例;模拟输入通道接口技术;A/D、D/A、接口技术及在控制系统中的应用设计;V/F转换器接口技术、串行通讯接口技术以及其它与应用系统设计有关的实用技术等。本书是为满足广大科技工作者从事单片机应用系统软件、硬件设计的需要而编写的,具有内容新颖、实用、全面的特色。所有的接口设计都包括详细的设计步骤、硬件线路图及故障分析,并附有测试程序清单。书中大部分接口软、硬件设计实例都是作者多年来从事单片机应用和开发工作的经验总结,实用性和工程性较强,尤其是对应用系统中必备的键盘、显示器、打印机、A/D、D/A通讯接口设计、模拟信号处理及开发系统应用举例甚多,目的是让将要开始和正在从事单片机应用开发的科研人员根据自己的实际需要来选择应用,一书在手即可基本完成单片机应用系统的开发工作。 MCS-51系列单片机实用接口技术目录 第一章 MCS51系列单片机组成原理第二章 MCS-51单片机系统扩展第三章 MCS-51单片机应用系统的开发第四章 键盘及其按口技术第五章 显示器接口设计第六章 打印机接口设计第七章 模拟输入通道接口技术第八章 D/A转换器与MSC-51单片机的接口设计与实践第九章 A/D转换器与MCS-51单片机的接口设计与实践 第十章 V/F转换器接口技术 第十一章 串行通讯按日技术第十二章应用系统设计中的实用技术附录AMCS51单片机指令速查表附录一常用EPROM固化电压参考表
上传时间: 2013-11-04
上传用户:3294322651
8.1 模拟接口概述单片机的外部设备不一定都是数字式的,也经常会和模拟式的设备连接。 例如单片机来控制温度、压力时,温度和压力都是连续变化的,都是模拟量,在单片机与外部环境通信的时候,就需要有一种转换器来把模拟信号变为数字信号,以便能够输送给单片机进行处理。而单片机送出的控制信号,也必须经过变换器变成模拟信号,才能为控制电路所接受。这种变换器就称为数模(D/A)转换器和模数(A/D)转换器。CPU与模拟外设之间的接口电路称为模拟接口。在这一章里将介绍单片机与 A/D及D/A转换器接口,以及有关的应用。 8.2 DAC及其接口一、DAC介绍:1.DAC结构:DAC芯片上集成有D/A转换电路和辅助电路。2.DAC的参数:描述D/A转换器性能的参数很多,主要有以下几个:分辨率(Resolution) 偏移误差(OffsetError) 线性度(Linearity) 精度(Accuracy) 转换速度(ConvemionRate) 温度灵敏度(TemperatureSensitivity) 二、典型DAC芯片及其接口一、DAC介绍:1.DAC结构:DAC芯片上集成有D/A转换电路和辅助电路。2.DAC的参数:描述D/A转换器性能的参数很多,主要有以下几个:分辨率(Resolution) 偏移误差(OffsetError) 线性度(Linearity) 精度(Accuracy) 转换速度(ConvemionRate) 温度灵敏度(TemperatureSensitivity) 8.3 ADC及其接口DAC 0832的结构DAC 0832的引脚DAC 0832的接口DAC 0832的应用DAC0832是CMOS工艺,双列直插式20引脚。① VCC电源可以在5-15V内变化。典型使用时用15V电源。② AGND为模拟量地线,DGND为数字量地线,使用时,这两个接地端应始终连在一起。③ 参考电压VREF接外部的标准电源,VREF一般可在+10V到—10V范围内选用。
标签: 模拟接口
上传时间: 2013-10-10
上传用户:ukuk