本书系统地论述了人工神经网络的主要理论和设计基础,给出了大量应用实例,旨在使读者了解神经网络的发展背景和研究对象,理解和熟悉其基本原理和主要应用,掌握其结构模型和基本设计方法,为以后的深入研究和应用开发打下基础。作者连续11年为电气信息类专业研究生及本科高年级学生开设“人工神经网络理论与应用”课程,2002年在多次修改讲义和多项科研成果基础上形成本书的第一版。本书第二版对原书约1/3的内容进行了更新,对保留内容进行了修改。取材注意内容的典型性和先进性,编排注意内容的逻辑性,阐述注重物理概念的清晰性,举例与思考练习的安排注意了内容的实践性,常用神经网络及算法的介绍着重于实用性。
标签: 人工神经网络
上传时间: 2022-06-21
上传用户:qingfengchizhu
木书以神经网络结构为主线,以学习算法为副线,详细介绍了神经网络结构和算法步骤,并给出实例和练习,目的是使读者易看懂,能动手,会应用。主要内容包括:人工神经网络简介、单层前向网络及LMS学习算法、多层前向网络及BP学习算法、支持向量机及其学习算法、 Hopfield神经网络与联想记忆、随机神经网络及模拟退火算法、竞争神经网络和协同神经网络。每章均给出了基于 MATLAB的仿真实例以及练习。
标签: 人工神经网络
上传时间: 2022-07-12
上传用户:
本文拟借助于神经网络良好的逼近能力,实现永磁同步电机的无位置传感器控制。 人工神经网络(Neural Network)可以逼近任意复杂非线性映射,具有很强的自学习自适应能力,十分适合于解决复杂的非线性控制问题。其中,BP神经网络是目前广泛应用的神经网络之一,得到了较为深入的研究,其结构简单,需要离线确定的参数少、泛化能力强、逼近精度高、实时性强,采用BP神经网络实现永磁同步电机的调速控制具有重要意义。 文中提出了基于BP神经网络的永磁同步电机自适应调速控制策略,建立了一种包含辨识网络和控制网络的双神经网络结构控制系统。辨识网络在线动态辨识系统输出并对控制网络参数进行调整,控制网络与PI控制方法相结合实现永磁同步电机自适应转速控制。仿真结果表明,该系统动态响应快、实时性较强、精度较高。 文中提出了一种基于混合训练算法的BP神经网络永磁同步电机无位置传感器控制方法。采用混沌优化和梯度下降法相结合的混合算法对BP神经网络进行离线训练后,将其用于永磁同步电机的转子位置角在线估计。结果表明,该训练算法可以有效地加快神经网络收敛速度,且估计的转子位置角误差较小、精度较高。 文中建立了以TMS320F2812芯片为核心的永磁同步电机调速控制系统,并进行了相应的软硬件设计,为实现永磁同步电机的各种控制策略奠定了实验基础。DSP控制系统为神经网络训练提供样本,为研究永磁同步电机的自适应调速控制和转子位置角估计创造了条件。
上传时间: 2013-05-23
上传用户:1101055045
本文首先简述了交流调速系统的发展和研究重点,介绍了异步电机调速系统的不同控制策略,详细论述了异步电机矢量控制系统的基本原理:异步电机的数学模型和坐标变换、矢量控制的基本方程式、转子磁链的观测方法、矢量控制的系统结构等,并重点分析了空间矢量脉宽调制(SVPWM)技术的基本原理、控制算法以及在TMS320LF2407中的实现方法。 从工程实际应用出发,本文设计和开发了一套以DSP芯片TMS320LF2407为核心的有速度传感器异步电机矢量控制系统,并给出了硬件和软件的实现方法。该系统的功率电路采用电压型的交-直-交变压变频结构,由整流电路、滤波电路及智能功率模块IPM(PM15RSH120)逆变电路构成;控制电路以DSP芯片TMS320LF2407为核心,加上PWM信号发生电路、定子电流检测电路、直流母线电压检测电路、智能功率模块驱动电路、速度检测电路、系统保护电路等,构成了功能齐全的异步电机全数字化矢量控制系统。 在此基础上,本文对无速度传感器异步电机矢量控制系统进行了有益的探索。提出了改进的电压型转子磁链估算模型,消除了电压型转子磁链估算模型中纯积分环节所固有的漂移问题和积累误差对实际系统性能的影响。在传统型参考自适应系统基础上,将系统中原有的自适应调节机构用一个具有在线学习能力的模糊神经网络取代,提出一种基于模糊神经网络的异步电机转速估计方法,并给出了速度估计器的模糊神经网络结构和学习算法。最后对基于模糊神经网络转速估计的异步电机矢量控制系统进行了仿真,结果表明该系统具有良好的性能。
上传时间: 2013-07-02
上传用户:amandacool
开关磁阻电机(SwitchedReluctanceMotor,SRM)具有结构简单、工作可靠、效率高和成本较低等优点,在很多领域都显示出强大的竞争力,但是位置传感器的存在不仅削弱了SRM结构简单的优势,而且降低了系统高速运行的可靠性,增加了成本,探索实用的无位置传感器检测转子位置的方案成为开关磁阻电机驱动系统(SwitchedReluctanceMotorDrive,SRD)研究的热点。SRM高度非线性的电磁特性决定了在精确的数学模型基础上实现无位置传感器控制十分困难,而人工神经网络的出现为解决这个问题提供了新的思路。径向基函数(RadialBasisFunction,RBF)神经网络是一种映射能力极强的前向型神经网络,具有收敛速度快、全局逼近能力强等优点。本文提出一种利用自适应RBF神经网络对SRM进行控制的新方法,所采用的RBF神经网络以电机绕组的相电流、磁链作为输入,转子位置作为输出,通过离线和在线相结合的方法对网络进行训练,建立SRM电流、磁链与转子位置之间的非线性映射,从而实现SRM的无位置传感器控制。 常规的PID控制以其结构简单、可靠性高、易于工程实现等优点至今仍被广泛采用。在系统模型参数变化不大的情况下,PID控制效果良好,但当被控对象具有高度非线性和不确定性时,仅靠PID调节效果不好。对于SRM,它的电磁关系高度非线性,固定参数的PID调节器无法得到很理想的控制性能指标。论文提出了一种基于RBF神经网络在线辨识的SRM单神经元PID自适应控制新方法。该方法针对开关磁阻电机的非线性,利用具有自学习和自适应能力的单神经元来构成开关磁阻电机的单神经元自适应控制器,不但结构简单,而且能适应环境变化,具有较强的鲁棒性。同时构造了一个RBF网络对系统进行在线辨识,建立其在线参考模型,由单神经元控制器完成控制器参数的自学习,从而实现控制器参数的在线调整,能取得更好的控制效果。 仿真及实验结果表明,自适应RBF神经网络能够实现电机的准确换相,从而实现了电机的无位置传感器控制;基于RBF神经网络在线辨识的单神经元自适应控制能够达到在线辨识在线控制的目的,控制精度高,动态特性好,具有较好的自适应性和鲁棒性。
上传时间: 2013-04-24
上传用户:skfreeman
·基于BP神经网络的字符识别
上传时间: 2013-06-17
上传用户:brucewan
·鲁棒控制7本.神经网络10本
上传时间: 2013-05-20
上传用户:lizhen9880
·基于PCA和BP神经网络算法的车牌字符识别
上传时间: 2013-04-24
上传用户:maizezhen
神经网络控制算法作为一种比较成熟的智能控制算法,在空空导弹的理论研究中也得到了很多应用,但它的实际应用通常是通过软件实现的,而软件实现是串行执行指令,运行速度慢,可靠性低,很难满足实际导弹制导系统实时性的要求。控制算法硬件实现的最大特点就是可提高控制算法的实时运算速度和可靠性。本课题针对导弹制导系统,以FPGA为硬件平台研究神经网络控制算法的硬件实现。本文首先对BP神经网络算法思想进行了深入分析,并对BP网络的各个阶段进行了理论推导,最后对BP神经网络PID飞行控制算法进行了研究和总结,为硬件实现提供了理论基础。基于对上述理论的深入研究和分析,本文提出了一种适合FPGA实现该神经网络控制算法的硬件实现模型。在该模型中,神经网络各层之间采用串行执行数据方式,层间则采用并行运行方式,可有效提高系统的运算速度。由于模块化、层次化的自顶向下的模块化设计方法可有效减少错误的产生,是设计复杂大规模系统的理想设计方法。本文采用了此设计方法,通过把系统模块化,对各个子模块分别用VHDL硬件描述语言进行描述,并基于QUARTUS II软件开发平台进行综合和仿真,直到达到研究设计要求。最后将仿真程序源代码下载配置到具体的Cyclone II系列EP2C70 FPGA芯片中,应用于某实际导弹控制系统的研究。理论分析和实验结果表明该神经网络飞行控制算法的FPGA硬件实现是有效可行的,可满足系统实时性的要求,为制导系统的实际工程实现提供了基础。
上传时间: 2013-04-24
上传用户:冇尾飞铊
·详细说明:基于概率神经网络的数字语音识别matlab程序文件列表: newpnn ......\demopnn1.m ......\ENFRAME.M ......\MELBANKM.M ......\mfcc.m ......\testpnn.asv ......\testpnn.m
上传时间: 2013-06-22
上传用户:thh29