虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

噪声<b>增益</b>

  • We have a group of N items (represented by integers from 1 to N), and we know that there is some tot

    We have a group of N items (represented by integers from 1 to N), and we know that there is some total order defined for these items. You may assume that no two elements will be equal (for all a, b: a<b or b<a). However, it is expensive to compare two items. Your task is to make a number of comparisons, and then output the sorted order. The cost of determining if a < b is given by the bth integer of element a of costs (space delimited), which is the same as the ath integer of element b. Naturally, you will be judged on the total cost of the comparisons you make before outputting the sorted order. If your order is incorrect, you will receive a 0. Otherwise, your score will be opt/cost, where opt is the best cost anyone has achieved and cost is the total cost of the comparisons you make (so your score for a test case will be between 0 and 1). Your score for the problem will simply be the sum of your scores for the individual test cases.

    标签: represented integers group items

    上传时间: 2016-01-17

    上传用户:jeffery

  • The XML Toolbox converts MATLAB data types (such as double, char, struct, complex, sparse, logical)

    The XML Toolbox converts MATLAB data types (such as double, char, struct, complex, sparse, logical) of any level of nesting to XML format and vice versa. For example, >> project.name = MyProject >> project.id = 1234 >> project.param.a = 3.1415 >> project.param.b = 42 becomes with str=xml_format(project, off ) "<project> <name>MyProject</name> <id>1234</id> <param> <a>3.1415</a> <b>42</b> </param> </project>" On the other hand, if an XML string XStr is given, this can be converted easily to a MATLAB data type or structure V with the command V=xml_parse(XStr).

    标签: converts Toolbox complex logical

    上传时间: 2016-02-12

    上传用户:a673761058

  • 汉诺塔!!! Simulate the movement of the Towers of Hanoi puzzle Bonus is possible for using animation

    汉诺塔!!! Simulate the movement of the Towers of Hanoi puzzle Bonus is possible for using animation eg. if n = 2 A→B A→C B→C if n = 3 A→C A→B C→B A→C B→A B→C A→C

    标签: the animation Simulate movement

    上传时间: 2017-02-11

    上传用户:waizhang

  • 将魔王的语言抽象为人类的语言:魔王语言由以下两种规则由人的语言逐步抽象上去的:α-〉β1β2β3…βm ;θδ1δ2…-〉θδnθδn-1…θδ1 设大写字母表示魔王的语言

    将魔王的语言抽象为人类的语言:魔王语言由以下两种规则由人的语言逐步抽象上去的:α-〉β1β2β3…βm ;θδ1δ2…-〉θδnθδn-1…θδ1 设大写字母表示魔王的语言,小写字母表示人的语言B-〉tAdA,A-〉sae,eg:B(ehnxgz)B解释为tsaedsaeezegexenehetsaedsae对应的话是:“天上一只鹅地上一只鹅鹅追鹅赶鹅下鹅蛋鹅恨鹅天上一只鹅地上一只鹅”。(t-天d-地s-上a-一只e-鹅z-追g-赶x-下n-蛋h-恨)

    标签: 语言 抽象 字母

    上传时间: 2013-12-19

    上传用户:aix008

  • 本代码为编码开关代码

    本代码为编码开关代码,编码开关也就是数字音响中的 360度旋转的数字音量以及显示器上用的(单键飞梭开 关)等类似鼠标滚轮的手动计数输入设备。 我使用的编码开关为5个引脚的,其中2个引脚为按下 转轮开关(也就相当于鼠标中键)。另外3个引脚用来 检测旋转方向以及旋转步数的检测端。引脚分别为a,b,c b接地a,c分别接到P2.0和P2.1口并分别接两个10K上拉 电阻,并且a,c需要分别对地接一个104的电容,否则 因为编码开关的触点抖动会引起轻微误动作。本程序不 使用定时器,不占用中断,不使用延时代码,并对每个 细分步数进行判断,避免一切误动作,性能超级稳定。 我使用的编码器是APLS的EC11B可以参照附件的时序图 编码器控制流水灯最能说明问题,下面是以一段流水 灯来演示。

    标签: 代码 编码开关

    上传时间: 2017-07-03

    上传用户:gaojiao1999

  • 【问题描述】 在一个N*N的点阵中

    【问题描述】 在一个N*N的点阵中,如N=4,你现在站在(1,1),出口在(4,4)。你可以通过上、下、左、右四种移动方法,在迷宫内行走,但是同一个位置不可以访问两次,亦不可以越界。表格最上面的一行加黑数字A[1..4]分别表示迷宫第I列中需要访问并仅可以访问的格子数。右边一行加下划线数字B[1..4]则表示迷宫第I行需要访问并仅可以访问的格子数。如图中带括号红色数字就是一条符合条件的路线。 给定N,A[1..N] B[1..N]。输出一条符合条件的路线,若无解,输出NO ANSWER。(使用U,D,L,R分别表示上、下、左、右。) 2 2 1 2 (4,4) 1 (2,3) (3,3) (4,3) 3 (1,2) (2,2) 2 (1,1) 1 【输入格式】 第一行是数m (n < 6 )。第二行有n个数,表示a[1]..a[n]。第三行有n个数,表示b[1]..b[n]。 【输出格式】 仅有一行。若有解则输出一条可行路线,否则输出“NO ANSWER”。

    标签: 点阵

    上传时间: 2014-06-21

    上传用户:llandlu

  • 离散实验 一个包的传递 用warshall

     实验源代码 //Warshall.cpp #include<stdio.h> void warshall(int k,int n) { int i , j, t; int temp[20][20]; for(int a=0;a<k;a++) { printf("请输入矩阵第%d 行元素:",a); for(int b=0;b<n;b++) { scanf ("%d",&temp[a][b]); } } for(i=0;i<k;i++){ for( j=0;j<k;j++){ if(temp[ j][i]==1) { for(t=0;t<n;t++) { temp[ j][t]=temp[i][t]||temp[ j][t]; } } } } printf("可传递闭包关系矩阵是:\n"); for(i=0;i<k;i++) { for( j=0;j<n;j++) { printf("%d", temp[i][ j]); } printf("\n"); } } void main() { printf("利用 Warshall 算法求二元关系的可传递闭包\n"); void warshall(int,int); int k , n; printf("请输入矩阵的行数 i: "); scanf("%d",&k); 四川大学实验报告 printf("请输入矩阵的列数 j: "); scanf("%d",&n); warshall(k,n); } 

    标签: warshall 离散 实验

    上传时间: 2016-06-27

    上传用户:梁雪文以

  • 道理特分解法

    #include "iostream" using namespace std; class Matrix { private: double** A; //矩阵A double *b; //向量b public: int size; Matrix(int ); ~Matrix(); friend double* Dooli(Matrix& ); void Input(); void Disp(); }; Matrix::Matrix(int x) { size=x; //为向量b分配空间并初始化为0 b=new double [x]; for(int j=0;j<x;j++) b[j]=0; //为向量A分配空间并初始化为0 A=new double* [x]; for(int i=0;i<x;i++) A[i]=new double [x]; for(int m=0;m<x;m++) for(int n=0;n<x;n++) A[m][n]=0; } Matrix::~Matrix() { cout<<"正在析构中~~~~"<<endl; delete b; for(int i=0;i<size;i++) delete A[i]; delete A; } void Matrix::Disp() { for(int i=0;i<size;i++) { for(int j=0;j<size;j++) cout<<A[i][j]<<" "; cout<<endl; } } void Matrix::Input() { cout<<"请输入A:"<<endl; for(int i=0;i<size;i++) for(int j=0;j<size;j++){ cout<<"第"<<i+1<<"行"<<"第"<<j+1<<"列:"<<endl; cin>>A[i][j]; } cout<<"请输入b:"<<endl; for(int j=0;j<size;j++){ cout<<"第"<<j+1<<"个:"<<endl; cin>>b[j]; } } double* Dooli(Matrix& A) { double *Xn=new double [A.size]; Matrix L(A.size),U(A.size); //分别求得U,L的第一行与第一列 for(int i=0;i<A.size;i++) U.A[0][i]=A.A[0][i]; for(int j=1;j<A.size;j++) L.A[j][0]=A.A[j][0]/U.A[0][0]; //分别求得U,L的第r行,第r列 double temp1=0,temp2=0; for(int r=1;r<A.size;r++){ //U for(int i=r;i<A.size;i++){ for(int k=0;k<r-1;k++) temp1=temp1+L.A[r][k]*U.A[k][i]; U.A[r][i]=A.A[r][i]-temp1; } //L for(int i=r+1;i<A.size;i++){ for(int k=0;k<r-1;k++) temp2=temp2+L.A[i][k]*U.A[k][r]; L.A[i][r]=(A.A[i][r]-temp2)/U.A[r][r]; } } cout<<"计算U得:"<<endl; U.Disp(); cout<<"计算L的:"<<endl; L.Disp(); double *Y=new double [A.size]; Y[0]=A.b[0]; for(int i=1;i<A.size;i++ ){ double temp3=0; for(int k=0;k<i-1;k++) temp3=temp3+L.A[i][k]*Y[k]; Y[i]=A.b[i]-temp3; } Xn[A.size-1]=Y[A.size-1]/U.A[A.size-1][A.size-1]; for(int i=A.size-1;i>=0;i--){ double temp4=0; for(int k=i+1;k<A.size;k++) temp4=temp4+U.A[i][k]*Xn[k]; Xn[i]=(Y[i]-temp4)/U.A[i][i]; } return Xn; } int main() { Matrix B(4); B.Input(); double *X; X=Dooli(B); cout<<"~~~~解得:"<<endl; for(int i=0;i<B.size;i++) cout<<"X["<<i<<"]:"<<X[i]<<" "; cout<<endl<<"呵呵呵呵呵"; return 0; } 

    标签: 道理特分解法

    上传时间: 2018-05-20

    上传用户:Aa123456789

  • OP 放大电路设计

    本书是“实用电子电路设计丛书”之一。本书内容分基础部分(1~5章)和应用部分(6~9章)。前者主要介绍OP放大器的零点、漂移及噪声,增益与桶位,相位补偿及技马,OP放大器的选择和系统设计;后者则主要介绍OP放大器作为反相放大器、正相放大器、差动放大器的应用,OP放大嚣在恒压、恒流电路和微分、积分电路中的应用以及基于非线性元件的应用,比较放大器中的应用,等等.本书面向实际需要,理论联系实际,列举大量实用性、技术性强的电路,使读者从原理到应用,对OP放大器有个系统的了解,以便能够应付电路中可能出现的更加复杂的情况和故障。本书适用对象是相关领域工程技术人员以及大学相关专业本科生、研究生;也可供广大的爱好者学习参考。

    标签: op 放大电路

    上传时间: 2022-06-23

    上传用户:

  • 射频电路与芯片设计要点

    《射频电路与芯片设计要点》是2007年06月高等教育出版社出版的图书,作者是(美国)李缉熙。本书重点讨论芯片级和PCB级射频电路设计和测试中经常遇到的阻抗匹配、接地、单端到差分转换、容差分析、噪声与增益和灵敏度、非线性和杂散波等关键问题。第1章 阻抗匹配的重要性第2章 阻抗匹配第3章 射频接地第4章 无源贴片元件的等效电路第5章 单端电路和差分对电路第6章 巴伦第7章 容差分析第8章 RFIC设计前景展望第9章 接收机的噪声、增益和灵敏度第10章 非线性和杂散分量第11章 级联方程和系统分析第12章 从模拟通信系统到数字通信系统

    标签: 射频电路

    上传时间: 2022-07-04

    上传用户:jiabin