📚 启发式算法技术资料

📦 资源总数:29804
💻 源代码:27698
启发式算法(heuristicalgorithm)是相对于最优化算法提出的。一个问题的最优算法求得该问题每个实例的最优解。启发式算法可以这样定义:一个基于直观或经验构造的算法,在可接受的花费(指计算时间和空间)下给出待解决组合优化问题每一个实例的一个可行解,该可行解与最优解的偏离程度一般不能被预计。现阶段,启发式算法以仿自然体算法为主,主要有蚁群算法、模拟退火法、神经网络等。[1]

🔥 启发式算法热门资料

查看全部29804个资源 »

微电子技术的发展,特别是可编程逻辑器件的产生加速了电子设计技术的发展,现代电子设计技术的核心日趋转向基于计算机的电子设计自动化技术,即EDA技术。EDA技术采用的自顶向下设计流程代替了原有的自下而上设计流程,缩短了集成电路的开发周期,节省了开发费用,促进了集成电路的发展。布局布线是计算机设计自动化的...

📅 👤 yxgi5

提出一种基于自适应混沌粒子群优化和支持向量机结合的非线性预测建模算法(ACPSO-SVR),引入ACPSO启发式寻优机制对SVR模型的超参数进行自动选取,在超参数取值范围变化较大的情况下,效果明显优于网格式搜索算法。选取UCI机器学习数据库中的Forest fires标准数据集进行测试,实验结果表明...

📅 👤 alibabamama

这是一个贪心算法的c程序。贪心算法(也叫贪婪算法)不是某种特定的算法,而是一类抽象的算法,或者说只是一种思想,它的具体表现在,对解空间进行搜索时,不是机械地搜索,而是对局部进行择优选取,贪心算法的目的不是为了找到全部解,也当然找不出最优解,而只是找出一种可行解,这样就会得到惊人的高效性。因此,贪心算...

📅 👤 baiom

模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。根据Metropolis准则,粒子在温度T时趋于平衡的概率为e-ΔE/(kT),其中E为温度T时的...

📅 👤 R50974

模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。根据Metropolis准则,粒子在温度T时趋于平衡的概率为e-ΔE/(kT),其中E为温度T时的...

📅 👤 ryb

💻 启发式算法源代码

查看更多 »
📂 启发式算法资料分类