C++完美演绎 经典算法 如 /* 头文件:my_Include.h */ #include <stdio.h> /* 展开C语言的内建函数指令 */ #define PI 3.1415926 /* 宏常量,在稍后章节再详解 */ #define circle(radius) (PI*radius*radius) /* 宏函数,圆的面积 */ /* 将比较数值大小的函数写在自编include文件内 */ int show_big_or_small (int a,int b,int c) { int tmp if (a>b) { tmp = a a = b b = tmp } if (b>c) { tmp = b b = c c = tmp } if (a>b) { tmp = a a = b b = tmp } printf("由小至大排序之后的结果:%d %d %d\n", a, b, c) } 程序执行结果: 由小至大排序之后的结果:1 2 3 可将内建函数的include文件展开在自编的include文件中 圆圈的面积是=201.0619264
标签: my_Include include define 3.141
上传时间: 2014-01-17
上传用户:epson850
fips181 一个很好的密码生成器,可以自动生成可读的密码,内置DES加密算法
上传时间: 2014-11-28
上传用户:rocwangdp
一个简单的药店进,销,存系统。 本程序主要面向三类权限的用户:药库管理员、药品出售员、一般患者。他们分别具有以下基本权限: 1) 一般患者 具有查询药品价格、类别等一般信息,不能进行修改、添加。 2) 管理员 主要负责系统维护工作,包括增加用户删除用户,数据备份与初始化等。 3) 出售员 出售员只能按处方出售药品,不能修改药品价格等信息。 以上各种用户的基本需求,为了最大程度的方便用户,我们还提供以下功能: a. 当管理员登录时,对于库存低的药品会给出警示,药品的最低库存可自行设制。 b. 对每个月每种药品的销量做出统计,并作出示意图。 c. 数据备份、恢复
标签:
上传时间: 2016-05-05
上传用户:离殇
本程序为加密芯片内部加密运算单元部分,包括32位减法器、移位寄存器、加/减法器、寄存器等,对密码芯片运算部分设计具有一定指导意义
上传时间: 2014-11-03
上传用户:ynwbosss
工业领域串口通信速度慢是个比较突出的问题, 而 F T 2 4 5 B M 能够进行 US B和并行 I / O口之间的 协议转换, 在一些条件下能够取代串口. 介绍 F T 2 4 5 B M 芯片的工作原理和功能, 并给出基于 F T2 4 5 B M 的 US B接口电路的应用设计和基于 8 9 c 5 2的汇编及 c 5 1 单片机源程序.
上传时间: 2017-05-27
上传用户:kytqcool
.功能与性能 (1)可以用16进制数预先设置5个数密码(共20bit),例如:F1A2E,密码可更改,上电后(复位)密码默认为20’h1_1111,设有一个密码输入完的确认键,在密码输入完成后以此信号作为判断密码是否正确的开始条件; (2)密码输入完成后按确认,若密码正确,绿灯亮,开关打开,若密码错误,红灯亮,开关保持闭合; (3)可进行密码重置:提供重置密码使能按键,按下该键可进行新密码的设置,新密码设置完成后再按一次确认键,新密码设置成功。只有在原始密码输入正确且开关打开后,才可以进行新密码的设置,否则,按重置密码使能按键后也不能进行新密码的设置; (4)密码串行输入,设有4bit的密码输入端口,设置新密码和密码正常输入过程中,一次输入一个16进制的数; (5)设有5组4bit的输出信号Num0、Num1、Num2、Num3、Num4,为数码管的显示编码信号,依次从左到右排列; 0000~1111分别代表16进制的0~F,上电后,全部显示为0;每次输入的密码均Num0显示,上次Num0显示的值左移至Num1,以此类推。例:一组密码的输入顺序是F---1---A---2---E,那么这组密码输入完成后,Num4为F,Num3为1,Num2为A,Num1为2,Num0为E。 另外,在设置新密码的过程中,也要显示刚刚输入的新密码。 (5)在密码输入过程中,可以按删除键,一次删除一个16进制数值密码,删除过程中Num0~Num4实时显示,当删完后,Num4~Num0显示00000,再按删除键,不进行任何操作,若有新的密码输入,则继续显示刚输入的密码。 (6)若在按确认键时,若输入的密码个数少于5个,则未输入的默认为0,若输入的密码个数大于5个,只用最后输入的5个数。例:依次输入F---1---A---2后按确认,则认为这组密码的第一个数为0,即Num4~Num0显示0---F---1---A---2,若依次输入F---1---A---2---E--3后按确认,则认为这组密码为1---A---2---E--3。 输入密码正确,开关打开后(接口说明中的绿灯亮即可代表开关打开了),可按关闭开关按键,重新将开关锁闭
上传时间: 2016-05-16
上传用户:小码农lz
集成电路设计以及制造业的不断发展,使得在单个芯片上集成多个处理器内核成为了可能。近年来多核处理器的发展过程中,多个内核对共享数据的访问一直存在数据冲突问题,也就是缓存(Cache)出现不一致情况。Cache 一致性协议就是为了解决这种不一致现象,使得内核可以实时访问到正确的数据。 本文在简单介绍Cache一致性之后,总结了三种改进的Cache一致性协议。第一种介绍了一致性协议与片上互联协议相协同的设计将多核架构与片上互联方式相结合,最终实现低延迟、高带宽、可扩展等特性。第二种提出了基于分层架构的混合一致性协议,将两种传统一致性协议进行了有效地结合。在第一层共享总线架构结构上采用总线监听一致性协议,第二层互联网络架构的结构上采用基于目录的一致性协议。该协议即解决了共享总线架构的总线带宽问题,又解决了基于目录的一致性协议中目录所占存储空间过大的问题,表现出了优良的性能。第三种是基于 Token 的动态可重构 Cache一致性协议,通过相关结果表明基于 Token 的动态可重构 Cache 一致性协议将能够有效的应用到众核处理器结构中。
标签: Cache
上传时间: 2016-11-28
上传用户:Nicole_K
/****************temic*********t5557***********************************/ #include <at892051.h> #include <string.h> #include <intrins.h> #include <stdio.h> #define uchar unsigned char #define uint unsigned int #define ulong unsigned long //STC12C2051AD的SFR定义 sfr WDT_CONTR = 0xe1;//stc2051的看门狗?????? /**********全局常量************/ //写卡的命令 #define write_command0 0//写密码 #define write_command1 1//写配置字 #define write_command2 2//密码写数据 #define write_command3 3//唤醒 #define write_command4 4//停止命令 #define TRUE 1 #define FALSE 0 #define OK 0 #define ERROR 255 //读卡的时间参数us #define ts_min 250//270*11.0592/12=249//取近似的整数 #define ts_max 304//330*11.0592/12=304 #define t1_min 73//90*11.0592/12=83:-10调整 #define t1_max 156//180*11.0592/12=166 #define t2_min 184//210*11.0592/12=194 #define t2_max 267//300*11.0592/12=276 //***********不采用中断处理:采用查询的方法读卡时关所有中断****************/ sbit p_U2270B_Standby = P3^5;//p_U2270B_Standby PIN=13 sbit p_U2270B_CFE = P3^3;//p_U2270B_CFE PIN=6 sbit p_U2270B_OutPut = P3^7;//p_U2270B_OutPut PIN=2 sbit wtd_sck = P1^7;//SPI总线 sbit wtd_si = P1^3; sbit wtd_so = P1^2; sbit iic_data = P1^2;//lcd IIC sbit iic_clk = P1^7; sbit led_light = P1^6;//测试绿灯 sbit led_light1 = P1^5;//测试红灯 sbit led_light_ok = P1^1;//读卡成功标志 sbit fengmingqi = P1^5; /***********全局变量************************************/ uchar data Nkey_a[4] = {0xA0, 0xA1, 0xA2, 0xA3};//初始密码 //uchar idata card_snr[4]; //配置字 uchar data bankdata[28] = {1,2,3,4,5,6,7,1,2,3,4,5,6,7,1,2,3,4,5,6,7,1,2,3,4,5,6,7}; //存储卡上用户数据(1-7)7*4=28 uchar data cominceptbuff[6] = {1,2,3,4,5,6};//串口接收数组ram uchar command; //第一个命令 uchar command1;// //uint temp; uchar j,i; uchar myaddr = 8; //uchar ywqz_count,time_count; //ywqz jishu: uchar bdata DATA; sbit BIT0 = DATA^0; sbit BIT1 = DATA^1; sbit BIT2 = DATA^2; sbit BIT3 = DATA^3; sbit BIT4 = DATA^4; sbit BIT5 = DATA^5; sbit BIT6 = DATA^6; sbit BIT7 = DATA^7; uchar bdata DATA1; sbit BIT10 = DATA1^0; sbit BIT11 = DATA1^1; sbit BIT12 = DATA1^2; sbit BIT13 = DATA1^3; sbit BIT14 = DATA1^4; sbit BIT15 = DATA1^5; sbit BIT16 = DATA1^6; sbit BIT17 = DATA1^7; bit i_CurrentLevel;//i_CurrentLevel BIT 00H(Saves current level of OutPut pin of U2270B) bit timer1_end; bit read_ok = 0; //缓存定时值,因用同一个定时器 union HLint { uint W; struct { uchar H;uchar L; } B; };//union HLint idata a union HLint data a; //缓存定时值,因用同一个定时器 union HLint0 { uint W; struct { uchar H; uchar L; } B; };//union HLint idata a union HLint0 data b; /**********************函数原型*****************/ //读写操作 void f_readcard(void);//全部读出1~7 AOR唤醒 void f_writecard(uchar x);//根据命令写不同的内容和操作 void f_clearpassword(void);//清除密码 void f_changepassword(void);//修改密码 //功能子函数 void write_password(uchar data *data p);//写初始密码或数据 void write_block(uchar x,uchar data *data p);//不能用通用指针 void write_bit(bit x);//写位 /*子函数区*****************************************************/ void delay_2(uint x) //延时,时间x*10us@12mhz,最小20us@12mhz { x--; x--; while(x) { _nop_(); _nop_(); x--; } _nop_();//WDT_CONTR=0X3C;不能频繁的复位 _nop_(); } ///////////////////////////////////////////////////////////////////// void initial(void) { SCON = 0x50; //串口方式1,允许接收 //SCON =0x50; //01010000B:10位异步收发,波特率可变,SM2=0不用接收到有效停止位才RI=1, //REN=1允许接收 TMOD = 0x21; //定时器1 定时方式2(8位),定时器0 定时方式1(16位) TCON = 0x40; //设定时器1 允许开始计时(IT1=1) TH1 = 0xfD; //FB 18.432MHz 9600 波特率 TL1 = 0xfD; //fd 11.0592 9600 IE = 0X90; //EA=ES=1 TR1 = 1; //启动定时器 WDT_CONTR = 0x3c;//使能看门狗 p_U2270B_Standby = 0;//单电源 PCON = 0x00; IP = 0x10;//uart you xian XXXPS PT1 PX1 PT0 PX0 led_light1 = 1; led_light = 0; p_U2270B_OutPut = 1; } /************************************************/ void f_readcard()//读卡 { EA = 0;//全关,防止影响跳变的定时器计时 WDT_CONTR = 0X3C;//喂狗 p_U2270B_CFE = 1;// delay_2(232); //>2.5ms /* // aor 用唤醒功能来防碰撞 p_U2270B_CFE = 0; delay_2(18);//start gap>150us write_bit(1);//10=操作码读0页 write_bit(0); write_password(&bankdata[24]);//密码block7 p_U2270B_CFE =1 ;// delay_2(516);//编程及确认时间5.6ms */ WDT_CONTR = 0X3C;//喂狗 led_light = 0; b.W = 0; while(!(read_ok == 1)) { //while(p_U2270B_OutPut);//等一个稳定的低电平?超时判断? while(!p_U2270B_OutPut);//等待上升沿的到来同步信号检测1 TR0 = 1; //deng xia jiang while(p_U2270B_OutPut);//等待下降沿 TR0 = 0; a.B.H = TH0; a.B.L = TL0; TH0 = TL0 = 0; TR0 = 1;//定时器晚启动10个周期 //同步头 if((324 < a.W) && (a.W < 353)) ;//检测同步信号1 else { TR0 = 0; TH0 = TL0 = 0; goto read_error; } //等待上升沿 while(!p_U2270B_OutPut); TR0 = 0; a.B.H = TH0; a.B.L = TL0; TH0 = TL0 = 0; TR0 = 1;//b.N1<<=8; if(a.B.L < 195);//0.5p else { TR0 = 0; TH0 = TL0 = 0; goto read_error; } //读0~7块的数据 for(j = 0;j < 28;j++) { //uchar i; for(i = 0;i < 16;i++)//8个位 { //等待下降沿的到来 while(p_U2270B_OutPut); TR0 = 0; a.B.H = TH0; a.B.L = TL0; TH0 = TL0 = 0; TR0 = 1; if(t2_max < a.W/*)&&(a.W < t2_max)*/)//1P { b.W >>= 2;//先左移再赋值 b.B.L += 0xc0; i++; } else if(t1_min < a.B.L/*)&&(a.B.L < t1_max)*/)//0.5p { b.W >>= 1; b.B.L += 0x80; } else { TR0 = 0; TH0 = TL0 = 0; goto read_error; } i++; while(!p_U2270B_OutPut);//上升 TR0 = 0; a.B.H = TH0; a.B.L = TL0; TH0 = TL0 = 0; TR0 = 1; if(t2_min < a.W/*)&&(a.W < t2_max)*/)//1P { b.W >>= 2; i++; } else if(t1_min < a.B.L/*a.W)&&(a.B.L < t1_max)*/)//0.5P //else if(!(a.W==0)) { b.W >>= 1; //temp+=0x00; //led_light1=0;led_light=1;delay_2(40000); } else { TR0 = 0; TH0 = TL0 = 0; goto read_error; } i++; } //取出奇位 DATA = b.B.L; BIT13 = BIT7; BIT12 = BIT5; BIT11 = BIT3; BIT10 = BIT1; DATA = b.B.H; BIT17 = BIT7; BIT16 = BIT5; BIT15 = BIT3; BIT14 = BIT1; bankdata[j] = DATA1; } read_ok = 1;//读卡完成了 read_error: _nop_(); } } /***************************************************/ void f_writecard(uchar x)//写卡 { p_U2270B_CFE = 1; delay_2(232); //>2.5ms //psw=0 standard write if (x == write_command0)//写密码:初始化密码 { uchar i; uchar data *data p; p = cominceptbuff; p_U2270B_CFE = 0; delay_2(31);//start gap>330us write_bit(1);//写操作码1:10 write_bit(0);//写操作码0 write_bit(0);//写锁定位0 for(i = 0;i < 35;i++) { write_bit(1);//写数据位1 } p_U2270B_CFE = 1; led_light1 = 0; led_light = 1; delay_2(40000);//测试使用 //write_block(cominceptbuff[4],p); p_U2270B_CFE = 1; bankdata[20] = cominceptbuff[0];//密码存入 bankdata[21] = cominceptbuff[1]; bankdata[22] = cominceptbuff[2]; bankdata[23] = cominceptbuff[3]; } else if (x == write_command1)//配置卡参数:初始化 { uchar data *data p; p = cominceptbuff; write_bit(1);//写操作码1:10 write_bit(0);//写操作码0 write_bit(0);//写锁定位0 write_block(cominceptbuff[4],p); p_U2270B_CFE= 1; } //psw=1 pssword mode else if(x == write_command2) //密码写数据 { uchar data*data p; p = &bankdata[24]; write_bit(1);//写操作码1:10 write_bit(0);//写操作码0 write_password(p);//发口令 write_bit(0);//写锁定位0 p = cominceptbuff; write_block(cominceptbuff[4],p);//写数据 } else if(x == write_command3)//aor //唤醒 { //cominceptbuff[1]操作码10 X xxxxxB uchar data *data p; p = cominceptbuff; write_bit(1);//10 write_bit(0); write_password(p);//密码 p_U2270B_CFE = 1;//此时数据不停的循环传出 } else //停止操作码 { write_bit(1);//11 write_bit(1); p_U2270B_CFE = 1; } p_U2270B_CFE = 1; delay_2(560);//5.6ms } /************************************/ void f_clearpassword()//清除密码 { uchar data *data p; uchar i,x; p = &bankdata[24];//原密码 p_U2270B_CFE = 0; delay_2(18);//start gap>150us //操作码10:10xxxxxxB write_bit(1); write_bit(0); for(x = 0;x < 4;x++)//发原密码 { DATA = *(p++); for(i = 0;i < 8;i++) { write_bit(BIT0); DATA >>= 1; } } write_bit(0);//锁定位0:0 p = &cominceptbuff[0]; write_block(0x00,p);//写新配置参数:pwd=0 //密码无效:即清除密码 DATA = 0x00;//停止操作码00000000B for(i = 0;i < 2;i++) { write_bit(BIT7); DATA <<= 1; } p_U2270B_CFE = 1; delay_2(560);//5.6ms } /*********************************/ void f_changepassword()//修改密码 { uchar data *data p; uchar i,x,addr; addr = 0x07;//block7 p = &Nkey_a[0];//原密码 DATA = 0x80;//操作码10:10xxxxxxB for(i = 0;i < 2;i++) { write_bit(BIT7); DATA <<= 1; } for(x = 0;x < 4;x++)//发原密码 { DATA = *(p++); for(i = 0;i < 8;i++) { write_bit(BIT7); DATA >>= 1; } } write_bit(0);//锁定位0:0 p = &cominceptbuff[0]; write_block(0x07,p);//写新密码 p_U2270B_CFE = 1; bankdata[24] = cominceptbuff[0];//密码存入 bankdata[25] = cominceptbuff[1]; bankdata[26] = cominceptbuff[2]; bankdata[27] = cominceptbuff[3]; DATA = 0x00;//停止操作码00000000B for(i = 0;i < 2;i++) { write_bit(BIT7); DATA <<= 1; } p_U2270B_CFE = 1; delay_2(560);//5.6ms } /***************************子函数***********************************/ void write_bit(bit x)//写一位 { if(x) { p_U2270B_CFE = 1; delay_2(32);//448*11.0592/120=42延时448us p_U2270B_CFE = 0; delay_2(28);//280*11.0592/120=26写1 } else { p_U2270B_CFE = 1; delay_2(92);//192*11.0592/120=18 p_U2270B_CFE = 0; delay_2(28);//280*11.0592/120=26写0 } } /*******************写一个block*******************/ void write_block(uchar addr,uchar data *data p) { uchar i,j; for(i = 0;i < 4;i++)//block0数据 { DATA = *(p++); for(j = 0;j < 8;j++) { write_bit(BIT0); DATA >>= 1; } } DATA = addr <<= 5;//0地址 for(i = 0;i < 3;i++) { write_bit(BIT7); DATA <<= 1; } } /*************************************************/ void write_password(uchar data *data p) { uchar i,j; for(i = 0;i < 4;i++)// { DATA = *(p++); for(j = 0;j < 8;j++) { write_bit(BIT0); DATA >>= 1; } } } /*************************************************/ void main() { initial(); TI = RI = 0; ES = 1; EA = 1; delay_2(28); //f_readcard(); while(1) { f_readcard(); //读卡 f_writecard(command1); //写卡 f_clearpassword(); //清除密码 f_changepassword(); //修改密码 } }
标签: 12345
上传时间: 2017-10-20
上传用户:my_lcs
常用电源类芯片Altium Designer AD原理图库元件库CSV text has been written to file : 电源类芯片.csvLibrary Component Count : 70Name Description----------------------------------------------------------------------------------------------------78Lxx 线性稳压芯片78Mxx 线性稳压芯片78xx 线性稳压芯片79xx 线性稳压芯片AMC7135 大功率LED恒流芯片AMS1117 三端稳压芯片APW7075 电压转换器AS1015 可调升压芯片CN3703 三节锂电池充电芯片DW01 锂电池过流保护ICFP6716 可调升压芯片GS3525 开关电源管理ICHT71xx LDO线性稳压芯片HY2110 锂电池保护 ICHY2213 电池充电平衡 ICLM2576 DC降压芯片LM2577 DC升压芯片LM2596 DC降压芯片LM2940 5V稳压芯片LM2991S 可调稳压芯片LM317 可调线性稳压芯片LTC4054 锂电池充电芯片LTC4057 锂电池充电管理ICMC34063 DC升降压芯片ME2100 可调升压芯片ME2149-5pin DC升压芯片ME2149-8pin DC升压芯片ME3149 IN:36V,OUT:0.8-33/3A,150MHzME4057 锂电池充电管理ICME6203 低功耗LDOME6209 低功耗LDOME8323X 电源管理ICMP2303 IN:28V,OUT:0.8-25/3A,360MHzMP2359 DC降压芯片PN8370 电源管理ICREF196 3V3基准电压源REF5040 高精度电压基准SD4923E 以太网受电设备控制器SDB628 DC升压芯片SM7033 非隔离AD-DCSX1308 可调升压芯片TL431-ID 可调基准稳压芯片TL431_SMD 可调基准稳压芯片TL432_SMD 可调基准稳压芯片TL494 电源管理ICTP4056 锂电池充电管理TPS3305 DSP电源管理TPS62400 电压转换器TPS63000 电压转换器TPS6735 负电压转换芯片UC3843 电源控制芯片XC6206P332MR 低压差线性稳压芯片XL1410 DC降压芯片XL1507 DC降压芯片XL1509 DC降电压芯片XL1513 DC降压芯片XL1530 DC降压芯片XL1583 DC降压芯片XL4003 DC降压芯片XL4005 DC降压芯片XL4013 DC降压芯片XL4015 DC降压芯片XL4016 DC降压芯片XL6005 LED恒流驱动XL6007 DC升压芯片XL6008 DC升压芯片XL6012 DC升压芯片XL6013 DC升压芯片XL6019 DC升压芯片XL7015E1 DC降压芯片
标签: 电源 Altium Designer
上传时间: 2022-03-13
上传用户:
产品型号:VK1056B VK1056C 产品品牌:永嘉微电/VINKA 封装形式:SOP24 SSOP24 产品年份:最新年份 联 系 人:陈锐鸿 Q Q:361 888 5898 联系手机:188 2466 2436(信) 原厂直销,工程服务,技术支持,价格最具优势! VK1056B/C概述: VK1056B/C 是 56 点、 内存映象和多功能的 LCD 驱动, VK1056B 的软件配置特性使它适用于多种 LCD 应用场合,包括 LCD 模块和显示系统,用于连接主控制器和 VK1056B 的管脚只有 4 条, VK1056B 还有一个节电命令用于降低系统功耗。 特点: ★ 工作电压:3.0-5.0V ★ 内嵌 256KHz RC oscillator ★ 可外接 32KHz 芯片或 256KHz 频率源程 ★ 可选择 1/2,1/3 偏压,也可选择 1/2,1/3 1/4 的占空比 ★ 两种蜂鸣器频率 ★ 节电命令可用于减少功耗 ★ 内 嵌 时 基 发 生 器 和 看 门 狗 定 时 器(WDT) ★ 8 个时基/看门狗定时器时钟源 ★ 一个 14X4 的 LCD 驱动器 ★ 一个内嵌的 32X4 位显示 RAM 内存 ★ 四线串行接口 ★ 内片 LCD 驱动频率源 ★ 数据模式和命令模式指令 ★ 三种数据访问模式 ★ 提供 VLCD 脚位可用来调整 LCD 电压 ★ 此篇产品叙述为功能简介,如需要完整产品PDF资料可以联系陈先生索取! LCD/LED液晶控制器及驱动器系列芯片简介如下: RAM映射LCD控制器和驱动器系列: VK1024B 2.4V~5.2V 6seg*4com 6*3 6*2 偏置电压1/2 1/3 S0P-16 VK1056B 2.4V~5.2V 14seg*4com 14*3 14*2 偏置电压1/2 1/3 SOP-24/SSOP-24 VK1072B 2.4V~5.2V 18seg*4com 18*3 18*2 偏置电压1/2 1/3 SOP-28 VK1072C 2.4V~5.2V 18seg*4com 18*3 18*2 偏置电压1/2 1/3 SOP-28 VK1088B 2.4V~5.2V 22seg*4com 22*3 偏置电压1/2 1/3 QFN-32L(4MM*4MM) VK0192 2.4V~5.2V 24seg*8com 偏置电压1/4 LQFP-44 VK0256 2.4V~5.2V 32seg*8com 偏置电压1/4 QFP-64 VK0256B 2.4V~5.2V 32seg*8com 偏置电压1/4 LQFP-64 VK0256C 2.4V~5.2V 32seg*8com 偏置电压1/4 LQFP-52 VK1621 2.4V~5.2V 32*4 32*3 32*2 偏置电压1/2 1/3 LQFP44/48/SSOP48/SKY28/DICE裸片 VK1622 2.7V~5.5V 32seg*8com 偏置电压1/4 LQFP44/48/52/64/QFP64/DICE裸片 VK1623 2.4V~5.2V 48seg*8com 偏置电压1/4 LQFP-100/QFP-100/DICE裸片 VK1625 2.4V~5.2V 64seg*8com 偏置电压1/4 LQFP-100/QFP-100/DICE VK1626 2.4V~5.2V 48seg*16com 偏置电压1/5 LQFP-100/QFP-100/DICE 高抗干扰LCD液晶控制器及驱动系列: VK2C21A 2.4~5.5V 20seg*4com 16*8 偏置电压1/3 1/4 I2C通讯接口 SOP-28 VK2C21B 2.4~5.5V 16seg*4com 12*8 偏置电压1/3 1/4 I2C通讯接口 SOP-24 VK2C21C 2.4~5.5V 12seg*4com 8*8 偏置电压1/3 1/4 I2C通讯接口 SOP-20 VK2C21D 2.4~5.5V 8seg*4com 4*8 偏置电压1/3 1/4 I2C通讯接口 SOP-16 VK2C22A 2.4~5.5V 44seg*4com 偏置电压1/2 1/3 I2C通讯接口 LQFP-52 VK2C22B 2.4~5.5V 40seg*4com 偏置电压1/2 1/3 I2C通讯接口 LQFP-48 VK2C23A 2.4~5.5V 56seg*4com 52*8 偏置电压1/3 1/4 I2C通讯接口 LQFP-64 VK2C23B 2.4~5.5V 36seg*8com 偏置电压1/31/4 I2C通讯接口 LQFP-48 VK2C24 2.4~5.5V 72seg*4com 68*8 60*16 偏置电压1/3 1/4 1/5 I2C通讯接口 LQFP-80 静态显示LCD液晶控制器及驱动系列: VKS118 2.4~5.2V 118seg*2com 偏置电压 -- 4线通讯接口 LQFP-128 VKS232 2.4~5.2V 116seg*2com 偏置电压1/1 1/2 4线通讯接口 LQFP-128 超低功耗LCD液晶控制器及驱动系列: VKL060 2.5~5.5V 15seg*4com 偏置电压1/2 1/3 I2C通讯接口 SSOP-24 VKL128 2.5~5.5V 32seg*4com 偏置电压1/2 1/3 I2C通讯接口 LQFP-44 VKL144A 2.5~5.5V 36seg*4com 偏置电压1/2 1/3 I2C通讯接口 TSSOP-48 VKL144B 2.5~5.5V 36seg*4com 偏置电压1/2 1/3 I2C通讯接口 QFN48L (6MM*6MM) 内存映射的LED控制器及驱动器: VK1628 --- 通讯接口:STB/CLK/DIO 电源电压:5V(4.5~5.5V) 驱动点阵:70/52 共阴驱动:10段7位/13段4位 共阳驱动:7段10位 按键:10x2 封装SOP28 VK1629 --- 通讯接口:STB/CLK/DIN/DOUT 电源电压:5V(4.5~5.5V) 驱动点阵:128共阴驱动:16段8位 共阳驱动:8段16位 按键:8x4 封装QFP44 VK1629A --- 通讯接口:STB/CLK/DIO 电源电压:5V(4.5~5.5V) 驱动点阵:128共阴驱动:16段8位 共阳驱动:8段16位 按键:--- 封装SOP32 VK1629B --- 通讯接口:STB/CLK/DIO 电源电压:5V(4.5~5.5V) 驱动点阵:112 共阴驱动:14段8位 共阳驱动:8段14位 按键:8x2 封装SOP32 VK1629C --- 通讯接口:STB/CLK/DIO 电源电压:5V(4.5~5.5V) 驱动点阵:120 共阴驱动:15段8位 共阳驱动:8段15位 按键:8x1 封装SOP32 VK1629D --- 通讯接口:STB/CLK/DIO 电源电压:5V(4.5~5.5V) 驱动点阵:96 共阴驱动:12段8位 共阳驱动:8段12位 按键:8x4 封装SOP32 VK1640 --- 通讯接口: CLK/DIN 电源电压:5V(4.5~5.5V) 驱动点阵:128共阴驱动:8段16位 共阳驱动:16段8位 按键:--- 封装SOP28 VK1640B LED驅動IC 8×12段位 8段12位共阴 12段8位共阳 封装SSOP24 VK1650 --- 通讯接口: SCL/SDA 电源电压:5V(3.0~5.5V) 驱动点阵:8x16共阴驱动:8段4位 共阳驱动:4段8位 按键:7x4 封装SOP16/DIP16 VK1651--- VK1651 LED驅動IC 7×4段位 7段4位共阴 7段4位共阳 7×1按键 封装SOP16/DIP16 VK1668 ---通讯接口:STB/CLK/DIO 电源电压:5V(4.5~5.5V) 驱动点阵:70/52共阴驱动:10段7位/13段4位 共阳驱动:7段10位 按键:10x2 封装SOP24 VK6932 --- 通讯接口:STB/CLK/DIN 电源电压:5V(4.5~5.5V) 驱动点阵:128共阴驱动:8段16位17.5/140mA 共阳驱动:16段8位 按键:--- 封装SOP32 VK16K33 --- 通讯接口:SCL/SDA 电源电压:5V(4.5V~5.5V) 驱动点阵:128/96/64 共阴驱动:16段8位/12段8位/8段8位 共阳驱动:8段16位/8段12位/8段8位按键:13x3 10x3 8x3 封装SOP20/SOP24/SOP28 VK1616 ---是 1/5~1/8 占空比的 LED 显示控制驱动电路,具有 7 根段输出、4 根栅输出,是一个由显示存储器、控制电路组成的高可靠性的 LED 驱动电路。串行数据通过三线串行接口输入到 VK1616,采用SOP16/DIP16 的封装形式 VK1618 ---是带键盘扫描接口的 LED 驱动控制专用电路,内部集成有 MCU 数字接口、数据锁存器、键盘扫描等电路。本产品主要应用于 VCR、VCD、DVD 及家庭影院等产品的显示屏驱动 封装SOP18/DIP18 VK1S68C --- LED驅動IC 10x7/13x4段位 10段7位/11段6位共阴 10x2按键,封装SSOP24 VK1Q68D --- 更小体积LED驅動IC 10x7/13x4段位 10段7位/11段6位共阴 10x2按键,封装QFP24 VK1S38A --- LED驱动IC 8段×8位 SSOP24L 封装SSOP24 VK1638 ---是一种带键盘扫描接口的LED(发光二极管显示器)驱动控制专用IC,内部集成有MCU数字接口、数据锁存器、LED驱动、键盘扫描等电路,封装SOP32 标准触控IC-电池供电系列: VKD223EB --- 工作电压/电流:2.0V-5.5V/5uA-3V 感应通道数:1 通讯界面 最长回应时间快速模式60mS,低功耗模式220ms 封装:SOT23-6 VKD223B --- 工作电压/电流:2.0V-5.5V/5uA-3V 感应通道数:1 通讯界面 最长回应时间快速模式60mS,低功耗模式220ms 封装:SOT23-6 VKD233DB --- 工作电压/电流:2.4V-5.5V/2.5uA-3V 1感应按键 封装:SOT23-6 通讯界面:直接输出,锁存(toggle)输出 低功耗模式电流2.5uA-3V VKD233DH ---工作电压/电流:2.4V-5.5V/2.5uA-3V 1感应按键 封装:SOT23-6 通讯界面:直接输出,锁存(toggle)输出 有效键最长时间检测16S VKD233DS --- 工作电压/电流:2.4V-5.5V/2.5uA-3V 1感应按键 封装:DFN6(2*2超小封装) 通讯界面:直接输出,锁存(toggle)输出 低功耗模式电流2.5uA-3V VKD233DR --- 工作电压/电流:2.4V-5.5V/1.5uA-3V 1感应按键 封装:DFN6(2*2超小封装) 通讯界面:直接输出,锁存(toggle)输出 低功耗模式电流1.5uA-3V VKD233DG --- 工作电压/电流:2.4V-5.5V/2.5uA-3V 1感应按键 封装:DFN6(2*2超小封装) 通讯界面:直接输出,锁存(toggle)输出 低功耗模式电流2.5uA-3V VKD233DQ --- 工作电压/电流:2.4V-5.5V/5uA-3V 1感应按键 封装:SOT23-6 通讯界面:直接输出,锁存(toggle)输出 低功耗模式电流5uA-3V VKD233DM --- 工作电压/电流:2.4V-5.5V/5uA-3V 1感应按键 封装:SOT23-6 (开漏输出) 通讯界面:开漏输出,锁存(toggle)输出 低功耗模式电流5uA-3V VKD232C --- 工作电压/电流:2.4V-5.5V/2.5uA-3V 感应通道数:2 封装:SOT23-6 通讯界面:直接输出,低电平有效 固定为多键输出模式,内建稳压电路 KPP734
上传时间: 2022-03-31
上传用户:shubashushi66