#include "iostream" using namespace std; class Matrix { private: double** A; //矩阵A double *b; //向量b public: int size; Matrix(int ); ~Matrix(); friend double* Dooli(Matrix& ); void Input(); void Disp(); }; Matrix::Matrix(int x) { size=x; //为向量b分配空间并初始化为0 b=new double [x]; for(int j=0;j<x;j++) b[j]=0; //为向量A分配空间并初始化为0 A=new double* [x]; for(int i=0;i<x;i++) A[i]=new double [x]; for(int m=0;m<x;m++) for(int n=0;n<x;n++) A[m][n]=0; } Matrix::~Matrix() { cout<<"正在析构中~~~~"<<endl; delete b; for(int i=0;i<size;i++) delete A[i]; delete A; } void Matrix::Disp() { for(int i=0;i<size;i++) { for(int j=0;j<size;j++) cout<<A[i][j]<<" "; cout<<endl; } } void Matrix::Input() { cout<<"请输入A:"<<endl; for(int i=0;i<size;i++) for(int j=0;j<size;j++){ cout<<"第"<<i+1<<"行"<<"第"<<j+1<<"列:"<<endl; cin>>A[i][j]; } cout<<"请输入b:"<<endl; for(int j=0;j<size;j++){ cout<<"第"<<j+1<<"个:"<<endl; cin>>b[j]; } } double* Dooli(Matrix& A) { double *Xn=new double [A.size]; Matrix L(A.size),U(A.size); //分别求得U,L的第一行与第一列 for(int i=0;i<A.size;i++) U.A[0][i]=A.A[0][i]; for(int j=1;j<A.size;j++) L.A[j][0]=A.A[j][0]/U.A[0][0]; //分别求得U,L的第r行,第r列 double temp1=0,temp2=0; for(int r=1;r<A.size;r++){ //U for(int i=r;i<A.size;i++){ for(int k=0;k<r-1;k++) temp1=temp1+L.A[r][k]*U.A[k][i]; U.A[r][i]=A.A[r][i]-temp1; } //L for(int i=r+1;i<A.size;i++){ for(int k=0;k<r-1;k++) temp2=temp2+L.A[i][k]*U.A[k][r]; L.A[i][r]=(A.A[i][r]-temp2)/U.A[r][r]; } } cout<<"计算U得:"<<endl; U.Disp(); cout<<"计算L的:"<<endl; L.Disp(); double *Y=new double [A.size]; Y[0]=A.b[0]; for(int i=1;i<A.size;i++ ){ double temp3=0; for(int k=0;k<i-1;k++) temp3=temp3+L.A[i][k]*Y[k]; Y[i]=A.b[i]-temp3; } Xn[A.size-1]=Y[A.size-1]/U.A[A.size-1][A.size-1]; for(int i=A.size-1;i>=0;i--){ double temp4=0; for(int k=i+1;k<A.size;k++) temp4=temp4+U.A[i][k]*Xn[k]; Xn[i]=(Y[i]-temp4)/U.A[i][i]; } return Xn; } int main() { Matrix B(4); B.Input(); double *X; X=Dooli(B); cout<<"~~~~解得:"<<endl; for(int i=0;i<B.size;i++) cout<<"X["<<i<<"]:"<<X[i]<<" "; cout<<endl<<"呵呵呵呵呵"; return 0; }
标签: 道理特分解法
上传时间: 2018-05-20
上传用户:Aa123456789
·300M内部时钟频率 ·可进行频移键控(FSK),二元相移键控(BPSK),相移键控(PSK),脉冲调频(CHIRP),振幅调制(AM)操作 ·正交的双通道12位D/A转换器 ·超高速比较器,3皮秒有效抖动偏差 ·外部动态特性: 80 dB无杂散动态范围(SFDR)@ 100 MHz (±1 MHz) AOUT ·4倍到20倍可编程基准时钟乘法器 ·两个48位可编程频率寄存器 ·两个14位可编程相位补偿寄存器 ·12位振幅调制和可编程的通断整形键控功能 ·单引脚FSK和BPSK数据输入接口 ·PSK功能可由I/O接口实现 ·具有线性和非线性的脉冲调频(FM CHIRP)功能,带有引脚可控暂停功能 ·具有过渡FSK功能 ·在时钟发生器模式下,有小于25 ps RMS抖动偏差 ·可自动进行双向频率扫描 ·能够对信号进行sin(x)/x校正 ·简易的控制接口: 可配置为10MHZ串行接口,2线或3线SPI兼容接口或100MHZ 8位并行可编程接口 ·3.3V单电源供电 ·具有多路低功耗功能 ·单输入或差分输入时钟 ·小型80脚LQFP 封装
上传时间: 2019-08-06
上传用户:fuxy
通过单片机控制数模转换器来实现直流稳压电源的功能,通过对DAC输出信号的放大就可以实现较大范围的电压源的产生,此次设计的是输出为8~12V输出可控的直流稳压源,通过按键控制输出电压的加减,按下按键可以实现电压加0.5V或减0.5V的功能;同时还设计了输出控制功能,相关功能按键按下后如果DAC是启动状态就将DAC关闭,使输出电压为0;反之则打开,输出给定的电压,真正实现了直流稳压源的智能化。
上传时间: 2022-01-11
上传用户:默默
1. 引言2. 概述3.3.1 100Mbps 以上的边缘速率3.3.2 99.999% 高可靠性和≤ 1ms 的超低时延3.3.3 1 个连接/ 平方米3.3.4 其他3.3.5 小结4.1.1 高频组网传播损耗与穿透损耗大,室外覆盖室内难4.1.2 无源分布式天线系统演进难、综合损耗大、互调干扰大3.1 5G 三大业务类型3.2 室内5G 业务及特征3.3 室内5G 业务对网络的需求4.2 多样化的业务要求网络具备更大的弹性容量4.3 行业应用要求网络具备极高可靠性4.4 四代共存网络及新业务发展要求网络具有高效运维、智能运营能力4.5 小结5.1 组网策略: 高中低频分层组网,提供更大容量5.2 MIMO 选择策略:标配4T4R,提供更好的用户体验5.3 方案选择策略:大容量数字化方案是必然选择5.4 容量策略:弹性容量,灵活按需满足业务需求5.5 可靠性策略:面向5G 业务的可靠性设计5.6 部署策略:端到端数字化部署,奠定网络运维和运营的基础5.7 网络运维策略:可视化运维,实现室内5G 网络可管可控5.8 网络运营策略:基于网络运营平台,支撑室内5G 网络智能运营5.9 小结
上传时间: 2022-01-30
上传用户:qdxqdxqdxqdx
目标要求:系统时钟8Mhz,6个PWM脉冲。实现上述目标的方法有很多种,比如两个定时器级连,定时器定时中断翻转IO口,等等,这里使用DMA的方式去实现。
上传时间: 2022-02-21
上传用户:qingfengchizhu
本设备电气性能优良,结构坚固,主要组成部分为收信机和整流器。能装车,且具有人力或兽力搬运的可能。适合于师、团一级或船舶、邮电部门使用。收信的频率范围为1.5~30兆赫,分五个波段。可以接收电报和电话。供电为190,200,220,240伏交流电源。收信机采取一次变频超外差式电路。有二级高频放大器,三级中频放大器,中频频率为600千赫。中频通带有四种,其中3种借助于中频晶体滤波器得到的。机内尚有可控的抑制脉冲干扰的噪声抑制电路开关收信机的频率度盘是用照相法按机刻度的,因此频率刻度的准确度较高。机内有500千赫晶体校准器用以校准度盘刻度。由于在高波段采用了波段展阔电路,故调谐方便。调谐旋钮轴与主调可变电容器及频率度盘由无间隙齿轮传动因此具有良好的再定度与使用可靠性。收信机由传动机构的飞轮惯性作用达到快速调谐效果,而由主调电容器比调谐旋钮轴减速108倍的作用达到慢调的效果。二者是通过同一个旋钮完成的本收信机结构可靠,机箱底部装有减震器。(或装有避震器供装车使用)故能经受颠簸冲击振动长途运输的考验。由于中频回路是密封的,高频电感与波段开关板等经过良好的处理工艺,在电路上则采取温度补偿等措施,使收信设备能在低温、高温及潮湿的条件下使用。机箱及底座均用铝板制成,减轻了收信机的重量。收信机还具有音频,自动增益控制,半双工等输出线。输出端可接二副TA4低阻抗耳机。整流器内用硅二极管作整流,还具有稳流灯丝及稳压电路。本设备使用的电子器件如下:
标签: 短波接收机
上传时间: 2022-03-29
上传用户:shjgzh
本书是原书作者在从事电力电子教学与研究的基础上编写而成的。本书第1~7章首先介绍了SPICE语言以及PSpice软件在模拟电路中的简单应用,其后第8~12章介绍了PSpice在电力电子学中的应用,主要涉及DCDC变换器、DCAC逆变器、谐振型变换器、可控式整流器和ACAC变换器的主电路仿真,然后第13章介绍了控制电路的仿真,第14章介绍了直流电动机的建模与仿真,最后介绍了仿真中遇到的一些问题及其解决办法。本书可为从事电力电子相关研究和应用的工程技术人员提供参考,也可作为高等院校相关专业学生的教材使用
上传时间: 2022-04-09
上传用户:
摘要随着科学技术的发展,万年历的设计也层出不穷。本设计以单片机AT89C51和DS1302为核心,结合译码器74HC154和驱动芯片741S244,以及模拟键盘,LED显示电路等构成一个可控及显示精确的万年历时间系统DS1302为一个实时时钟芯片,具有较高时间精度,它与单片机进行串口通信,单片机通过与它的通信,取出其时间寄存器中的值,再通过相应的电路,把时间值通过LED显示,如果显示的值与标准时间不同,此系统就经过模拟键盘灵活控制,调节DS1302中时间寄存器中的值,达到与标准时间同步。关键词 AT89C51,DS1302在科技日新月异发展的今天,人们对时间概念的认识显得尤为深刻,“时间就是金钱”,“时间就是生命”等警句更是激励着人们努力工作,把握时间。作为时间的标量,时钟等计时设备也随着人们的不断认识而变化。在三千年前,我国祖先就发明了用土和石片刻制成的“土主”与“日规”两种计时器,成为世界上最早发明计时器的国家之一。到了铜器时代,计时器又有了新的发展,用青铜制的“漏壶”取代了“土主”与“日规”。东汉元初四年张衡发明了世界第一架“水运浑象”,此后唐高僧一行等人又在此基础上借鉴改进发明了“水运浑天仪”、“水运仪象台”。至元明之时,计时器摆脱了天文仪器的结构形式,得到了突破性的新发展。元初郭守敬、明初詹希元创制了“大明灯漏”与“五轮沙漏”,采用机机械结构,并增添盘、针来指示时间,这使其计时更准确,机械性也更先进。
上传时间: 2022-06-19
上传用户:
论文通过对高精度脉冲式激光测距系统的研究,并在参照课题技术指标的基础上,旨在提供一种高精度脉冲式激光测距系统的解决方案,并对脉冲式激光测距仪系统设计中所涉及的脉冲读取与放大电路、时刻鉴别、时间间隔测量等关键技术进行了深入的研究和探讨。论文利用电流-电压转换法对脉冲信号进行读取,并使用了可控增益放大技术,使得放大后的脉冲信号能在限定幅值范围内变化,减小了时刻鉴别中由于脉冲幅值波动所引起的漂移误差;在时刻鉴别中,采用了预鉴别恒定比值鉴别法使漂移误差进一步减小。时间间隔测量是论文的核心部分,基于TDC-GP2的时间间隔测量设计使系统的时差测量精度达到72ps,高精度的时差测量为系统测距精度提供了可靠保障。关键词:脉冲激光测距;可控增益放大;蜂值检测:时刻鉴别:TDC-GP2
标签: 脉冲激光测距
上传时间: 2022-06-21
上传用户:
内容摘要电力电子为人类做出了不可磨灭的贡献,因此研究电力电子件是为时代所需。本次课程设计为三相半波整流电路的设计,本组选择方案为三相半波可控整流电路的设计。主要分为三大模块:主电路一触发电路和保护电路,其中触发电路为集成电路。所选器件基本为电阻-电感和门极可关断晶闸管(GTO)等。由于当负载为电阻和电阻电感时的电路的工作情况不同,所以电路中对它们各自工作的情况进行系统而详细的分析。设计中对电路的工作原理以及电路器件的数计算等均有涉及。根据计算的结果,又遵循经济安全的原则,设计中对器件的型号做出了最后的选择。由于时间仓促,难免有些差错,望批评指正。1设计要求(1)输入电压:三相交流380V、5012(2)输出功率:2KW(3)用集成电路组成触发电路(4)负载性质:电阻、电阻电感(5)对电路进行设计计算说明(6)计算所用元器件型号参数2整流电路的分类及案选择整流电路将交流电变为直流电,应用十分广泛,电路形式多种多样,各具特色。可以从多种角度对整流电路进行分类:按电路结构可分为桥式电路和零式电路;按组成的器件可分为不可控半控一全控三种;按交流输入相数可分为单相电路和多相电路;按电压器二次侧电流的方向是单向或双向,又分为单拍和双拍电路。鉴于本课程设计,需要三相半波整流电路,可有两种方案选择:方案1,三相半波不可控整流电路;方案2,三相半波可控整流电路。对于三相半波不可控整流电路,电路中采用了三个二极管整流,此电路不需要触发电路,同时负载电压不可调,而三相半波可控整流电路,电路中采用三个晶闸管整流,电路中有专门的触发电路,触发电路适时的给予脉冲,可调节输出电压,可适合不同电压的要求,并且直流脉动小,可承受整流负载较大,常见使用等优点,所以本次课程设计选择三相半波可控整流电路,即方案2,其大体图形如图(1)。
上传时间: 2022-06-24
上传用户:bluedrops