同步整流技术简单介绍大家都知道,对于开关电源,在次级必然要有一个整流输出的过程。作为整流电路的主要元件,通常用的是整流二极管(利用它的单向导电特性),它可以理解为一种被动式器件:只要有足够的正向电压它就开通,而不需要另外的控制电路。但其导通压降较高,快恢复二极管(FRD)或超快恢复二极管(SRD)可达1.0~1.2V,即使采用低压降的肖特基二极管(SBD),也会产生大约0.6V的压降。这个压降完全是做的无用功,并且整流二极管是一种固定压降的器件,举个例子:如有一个管子压降为0.7V,其整流为12V时它的前端要等效12.7V电压,损耗占0.7/12.7≈5.5%.而当其为3.3V整流时,损耗为0.7/4(3.3+0.7)≈17.5%。可见此类器件在低压大电流的工作环境下其损耗是何等地惊人。这就导致电源效率降低,损耗产生的热能导致整流管进而开关电源的温度上升、机箱温度上升--------有时系统运行不稳定、电脑硬件使用寿命急剧缩短都是拜这个高温所赐。随着电脑硬件技术的飞速发展,如GeForce 8800GTX显卡,其12V峰值电流为16.2A。所以必须制造能提供更大输出电流(如多核F1,四路12V,每路16A;3.3V和5V输出电流各高达24A)的电源转换器。而当前世界的能源紧张问题的凸现,为广大用户提供更高转换效率(如多核R80,完全符合80PLUS标准)的电源转换器就是我们整个开关电源行业的不可回避的社会责任了。如何解决这些问题?寻找更好的整流方式、整流器件。同步整流技术和通态电阻(几毫欧到十几毫欧)极低的专用功率MOSFET就是在这个时刻走上开关电源技术发展的历史舞台了!作为取代整流二极管以降低整流损耗的一种新器件,功率MOSFET属于电压控制型器件,它在导通时的伏安特性呈线性关系。因为用功率MOSFET做整流器时,要求栅极电压必须与被整流电压的相位保持同步才能完成整流功能,故称之为同步整流。它可以理解为一种主动式器件,必须要在其控制极(栅极)有一定电压才能允许电流通过,这种复杂的控制要求得到的回报就是极小的电流损耗。在实际应用中,一般在通过20-30A电流时才有0.2-0.3V的压降损耗。因为其压降等于电流与通态电阻的乘积,故小电流时,其压降和恒定压降的肖特基不同,电流越小压降越低。这个特性对于改善轻载效率(20%)尤为有效。这在80PLUS产品上已成为一种基本的解决方案了。对于以上提到的两种整流方案,我们可以通过灌溉农田来理解:肖特基整流管可以看成一条建在泥土上没有铺水泥的灌溉用的水道,从源头下来的水源在中途渗漏了很多,十方水可能只有七、八方到了农田里面。而同步整流技术就如同一条镶嵌了光滑瓷砖的引水通道,除了一点点被太阳晒掉的损失外,十方水能有9.5方以上的水真正用于浇灌那些我们日日赖以生存的粮食。我们的多核F1,多核R80,其3.3V整流电路采用了通态电阻仅为0.004欧的功率MOSFET,在通过24A峰值电流时压降仅为20*0.004=0.08V。如一般PC正常工作时的3.3V电流为10A,则其压降损耗仅为10*0.004=0.04V,损耗比例为0.04/4=1%,比之于传统肖特基加磁放大整流技术17.5%的损耗,其技术的进步已不仅仅是一个量的变化,而可以说是有了一个质的飞跃了。也可以说,我们为用户修建了一条严丝合缝的灌溉电脑配件的供电渠道。
标签: 同步整流
上传时间: 2013-10-27
上传用户:杏帘在望
MAX29X是美国MAXIM公司生瓣的8阶开关电容低通滤波器,由于价格便宜、使用方便、设计简单,在通讯、信号自理等领域得到了广泛的应用。本文就其工作原理、电气参数、设计注意事项等问题作了讨论,具有一定的实用参考价值。关键词:开关电容、滤波器、设计 1 引言 开关电容滤波器在近些年得到了迅速的发展,世界上一些知名的半导体厂家相继推出了自己的开头电容滤波器集成电路,使形状电容滤波器的发展上了一个新台阶。 MAXIM公司在模拟器件生产领域颇具影响,它生产MAX291/292/293/294/295/296/297系列8阶低通开关电容滤波器由于使用方便(基本上不需外接元件)、设计简单(频率响应函数是固定的,只需确定其拐角频率即截止频率)、尺寸小(有8-pin DIP封装)等优点,在ADC的反混叠滤波、噪声分析、电源噪声抑制等领域得到了广泛的应用。 MAX219/295为巴特活思(型滤波器,在通频带内,它的增益最稳定,波动小,主要用于仪表测量等要求整个通频带内增益恒定的场合。MAX292/296为贝塞尔(Bessel)滤波器,在通频带内它的群时延时恒定的,相位对频率呈线性关系,因此脉冲信号通过MAX292/296之后尖峰幅度小,稳定速度快。由于脉冲信号通过贝塞尔滤波器之后所有频率分量的延迟时间是相同的,故可保证波形基本不变。关于巴特活和贝塞尔滤波器的特性可能图1来说明。图1的踪迹A为加到滤波器输入端的3kHz的脉冲,这里我们把滤波器的截止频率设为10kHZ。踪迹B通过MAX292/296后的波形。从图中可以看出,由于MAX292/296在通带内具有线性相位特性,输出波形基本上保持了方波形状,只是边沿处变圆了一些。方波通过MAX291/295之后,由于不同频率的信号产生的时延不同,输出波形中就出现了尖峰(overshoot)和铃流(ringing)。 MAX293/294/297为8阶圆型(Elliptic)滤波器,它的滚降速度快,从通频带到阻带的过渡带可以作得很窄。在椭圆型滤波器中,第一个传输零点后输出将随频率的变高而增大,直到第二个零点处。这样几番重复就使阻事宾频响呈现波浪形,如图2所示。阻带从fS起算起,高于频率fS处的增益不会超过fS处的增益。在椭圆型滤波中,通频带内的增益存在一定范围的波动。椭圆型滤波器的一个重要参数就是过渡比。过渡比定义为阻带频率fS与拐角频率(有时也等同为截止频率)由时钟频率确定。时钟既可以是外接的时钟,也可以是自己的内部时钟。使用内部时钟时只需外接一个定时用的电容既可。 在MAX29X系列滤波器集成电路中,除了滤波器电路外还有一个独立的运算放大器(其反相输入端已在内部接地)。用这个运算放大器可以组成配合MAX29X系列滤波器使用后的滤波、反混滤波等连续时间低通滤波器。 下面归纳一下它们的特点: ●全部为8阶低通滤波器。MAX291/MAX295为巴特沃思滤波器;MAX292/296为贝塞尔滤波器;MAX293/294/297为椭圆滤波器。 ●通过调整时钟,截止频率的调整范围为:0.1Hz~25kHz(MAX291/292/293*294);0.1Hz~kHz(MAX295/296/297)。 ●既可用外部时钟也可用内部时钟作为截止频率的控制时钟。 ●时钟频率和截止频率的比率:10∶1(MAX291/292/293/294);50∶1(MAX295/296/297)。 ●既可用单+5V电源供电也可用±5V双电源供电。 ●有一个独立的运算放大器可用于其它应用目的。 ●8-pin DIP、8-pin SO和宽SO-16多种封装。2 管脚排列和主要电气参数 MAX29X系列开头电容滤波器的管脚排列如图3所示。 管脚功能定义如下: CLK:时钟输入。 OP OUT:独立运放的输出端。 OP INT:独立运放的同相输入端。 OUT:滤波器输出。 IN:滤波器输入。 V-:负电源 。双电源供电时搛-2.375~-5.5V之间的电压,单电源供电时V--=-V。 V+:正电源。双电源供电时V+=+2.35~+5.5V,单电源供电时V+=+4.75~+11.0V。 GND:地线。单电源工作时GND端必须用电源电压的一半作偏置电压。 NC:空脚,无连线。 MAX29X的极限电气参数如下: 电源(V+~V-):12V 输入电压(任意脚):V--0.3V≤VIN≤V++0.3V 连续工作时的功耗:8脚塑封DIP:727mW;8脚SO:471mW;16脚宽SO:762mW;8脚瓷封DIP:640mW。 工作温度范围:MAX29-C-:0℃~+70℃;MAX29-E-:-40℃~+85℃;MAX29-MJA:-55℃~+125℃;保存温度范围:-65℃~+160℃;焊接温度(10秒):+300℃; 大多数的形状电容滤波器都采用四节级连结构,每一节包含两个滤波器极点。这种方法的特点就是易于设计。但采用这种方法设计出来的滤波器的特性对所用元件的元件值偏差很敏感。基于以上考虑,MAX29X系列用带有相加和比例功能的开关电容持了梯形无源滤波器,这种方法保持了梯形无源滤波器的优点,在这种结构中每个元件的影响作用是对于整个频率响应曲线的,某元件值的误差将会分散到所有的极点,因此不值像四节级连结构那样对某一个极点特别明显的影响。3 MAX29X的频率特性 MAX29X的频率特性如图4所示。图中的fs都假定为1kHz。4 设计考虑 下面对MAX29X系列形状电容滤波器的使用做些讨论。4.1 时钟信号 MAX29X系列开头电容滤波器推荐使用的时钟信号最高频率为2.5MHz。根据对应的时钟频率和拐角频率的比值,MAX291/MAX292/MAX293/MAX294的拐角频率最高为25kHz.MAX295/MAX296/MAX297的拐角频率最高为50kHz 。 MAX29X系列开关电容滤波器的时钟信号既可幅外部时钟直接驱动也可由内部振荡器产生。使用外部时钟时,无论是采用单电源供电还是双电源供电,CLK可直接和采用+5V供电的CMOS时钟信号发生器的输出相连。通过调整外部时钟的频率,可完成滤波器拐角的实时调整。 当使用内部时钟时,振荡器的频率由接在CLK端上的电容VCOSC决定: fCOSC (kHz)=105/3COSC (pF) 4.2 供电 MAX29X系列开关电容滤波器既可用单电源工作也可用双电源工作。双电源供电时的电源电压范围为±2.375~±5.5V。在实际电路中一般要在正负电源和GND之间接一旁路电容。 当采用单电源供电时,V-端接地,而GND端要通过电阻分压获得一个电压参考,该电压参考的电压值为1/2的电源电压,参见图5。4.3 输入信号幅度范围限制 MAX29X允许的输入信号的最大范围为V--0.3V~V++0.3V。一般情况下在+5V单电源供电时输入信号范围取1V~4V,±5V双电源供电时,输入信号幅度范围取±4V。如果输入信号超过此范围,总谐波失真THD和噪声就大大增加;同样如果输入信号幅度过小(VP-P<1V),也会造成THD和噪声的增加。4.4 独立运算放大器的用法 MAX29X中都设计有一个独立的运算放大器,这个放大器和滤波器的实现无直接关系,用这个放大器可组成一个一阶和二阶滤波器,用于实现MAX29X之前的反混叠滤波功能鄞MAX29X之后的时钟噪声抑制功能。这个运算放大器的反相端已在内部和GND相连。 图6是用该独立运放组成的2阶低通滤波器的电路,它的拐角频率为10kHz,输入阻抗为22Ω,可满足MAX29X形状电容滤波器的最小负载要求(MAX29X的输出负载要求不小于20kΩ)可以通过改变R1、R2、R3、C1、C2的元件值改变拐角频率。具体的元件值和拐角频率的对应关系参见表1。
上传时间: 2013-10-18
上传用户:macarco
单路带数码管可编程可调节延时模块
上传时间: 2013-10-07
上传用户:hbsunhui
1、该控制板是基于modbus协议RTU模式进行通讯,是一种工业标准协议,具有稳定性高,使用广泛,从而可以兼容其他设备 2、三十路带光电隔离输出控制继电器。 3、标准的11.0592M晶振。(便于设置串口波特率) 4、具有上电复位和手动复位。 5、支持51系列DIP40封装单片机。
标签: modbus_RTU 模式 工控板 存储
上传时间: 2013-11-10
上传用户:niumeng16
TLC2543是TI公司的12位串行模数转换器,使用开关电容逐次逼近技术完成A/D转换过程。由于是串行输入结构,能够节省51系列单片机I/O资源;且价格适中,分辨率较高,因此在仪器仪表中有较为广泛的应用。 TLC2543的特点 (1)12位分辩率A/D转换器; (2)在工作温度范围内10μs转换时间; (3)11个模拟输入通道; (4)3路内置自测试方式; (5)采样率为66kbps; (6)线性误差±1LSBmax; (7)有转换结束输出EOC; (8)具有单、双极性输出; (9)可编程的MSB或LSB前导; (10)可编程输出数据长度。 TLC2543的引脚排列及说明 TLC2543有两种封装形式:DB、DW或N封装以及FN封装,这两种封装的引脚排列如图1,引脚说明见表1 TLC2543电路图和程序欣赏 #include<reg52.h> #include<intrins.h> #define uchar unsigned char #define uint unsigned int sbit clock=P1^0; sbit d_in=P1^1; sbit d_out=P1^2; sbit _cs=P1^3; uchar a1,b1,c1,d1; float sum,sum1; double sum_final1; double sum_final; uchar duan[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f}; uchar wei[]={0xf7,0xfb,0xfd,0xfe}; void delay(unsigned char b) //50us { unsigned char a; for(;b>0;b--) for(a=22;a>0;a--); } void display(uchar a,uchar b,uchar c,uchar d) { P0=duan[a]|0x80; P2=wei[0]; delay(5); P2=0xff; P0=duan[b]; P2=wei[1]; delay(5); P2=0xff; P0=duan[c]; P2=wei[2]; delay(5); P2=0xff; P0=duan[d]; P2=wei[3]; delay(5); P2=0xff; } uint read(uchar port) { uchar i,al=0,ah=0; unsigned long ad; clock=0; _cs=0; port<<=4; for(i=0;i<4;i++) { d_in=port&0x80; clock=1; clock=0; port<<=1; } d_in=0; for(i=0;i<8;i++) { clock=1; clock=0; } _cs=1; delay(5); _cs=0; for(i=0;i<4;i++) { clock=1; ah<<=1; if(d_out)ah|=0x01; clock=0; } for(i=0;i<8;i++) { clock=1; al<<=1; if(d_out) al|=0x01; clock=0; } _cs=1; ad=(uint)ah; ad<<=8; ad|=al; return(ad); } void main() { uchar j; sum=0;sum1=0; sum_final=0; sum_final1=0; while(1) { for(j=0;j<128;j++) { sum1+=read(1); display(a1,b1,c1,d1); } sum=sum1/128; sum1=0; sum_final1=(sum/4095)*5; sum_final=sum_final1*1000; a1=(int)sum_final/1000; b1=(int)sum_final%1000/100; c1=(int)sum_final%1000%100/10; d1=(int)sum_final%10; display(a1,b1,c1,d1); } }
上传时间: 2013-11-19
上传用户:shen1230
PSHLY-B回路电阻测试仪介绍
上传时间: 2013-11-05
上传用户:木子叶1
摘要:以单片机为核心,采用温度变送器桥路和固态继电粉控谧电路,实现对电炉温度的自动控制。该控制系统具有硬件成本低、控温精度较高,可靠性好、抗干扰能力强等特点。关键词:电加热炉 控温 固态继电器
上传时间: 2013-11-01
上传用户:qoovoop
简介:本产品是将三相晶闸管主电路和移相触发调控电路封装在一起的多功能功率集成模块。它是一个完整电力移相开环控制系统,可实现对三相电力进行整流调压。产品可广泛用于直流电机调速、工业自动化、电加热控制、机电一体化、各类电源、化工、纺织通讯等领域;可实现手动、自动控制接口,主电路交流输入无相序要求,线性控制电路,精度高,稳定性好。
上传时间: 2013-11-12
上传用户:MATAIYES
PIC 单片机的组成习题解答 解答部分1. PIC 单片机指令的执行过程遵循着一种全新哈佛总线体系结构的原则,充分利用了计算机系统在程序存储器和数据存储器之间地址空间的相互独立性,取指过程和执行指令过程可以流水线操作同时进行。因此,当PIC 时钟频率为4MHZ时,执行一条非转移类指令需要4 个系统时钟周期,即1us,但其指令执行的真实时间应为2us(在执行n—1 条指令时取第n 条指令,然后执行第n 条指令)。所以选项B 正确2. 端口RE 共有3 个引脚RE0~RE2,它们除了用做普通I/O 引脚和第5~7 路模拟信号输入引脚外,还依次分别承担并行口读出/写入/片选控制端引脚。A. 对。读出/写入(REO~RE1)。B.错。同步串行的相关引脚与端口C 有关。C.错。通用异步/同步串行的相关引脚与端口C有关。D. 错。CCP模块的相关引脚也是与端口C有关。所以选项A正确。3. 上电延时电路能提供一个固定的72ms 上电延时,从而使VDD有足够的时间上繁荣昌盛到单片机合适的工作电压。所以选项B 正确。
上传时间: 2013-11-09
上传用户:glxcl
at91rm9200启动过程教程 系统上电,检测BMS,选择系统的启动方式,如果BMS为高电平,则系统从片内ROM启动。AT91RM9200的ROM上电后被映射到了0x0和0x100000处,在这两个地址处都可以访问到ROM。由于9200的ROM中固化了一个BOOTLOAER程序。所以PC从0X0处开始执行这个BOOTLOAER(准确的说应该是一级BOOTLOADER)。这个BOOTLOER依次完成以下步骤: 1、PLL SETUP,设置PLLB产生48M时钟频率提供给USB DEVICE。同时DEBUG USART也被初始化为48M的时钟频率; 2、相应模式下的堆栈设置; 3、检测主时钟源(Main oscillator); 4、中断控制器(AIC)的设置; 5、C 变量的初始化; 6、跳到主函数。 完成以上步骤后,我们可以认为BOOT过程结束,接下来的就是LOADER的过程,或者也可以认为是装载二级BOOTLOER。AT91RM9200按照DATAFLASH、EEPROM、连接在外部总线上的8位并行FLASH的顺序依次来找合法的BOOT程序。所谓合法的指的是在这些存储设备的开始地址处连续的存放的32个字节,也就是8条指令必须是跳转指令或者装载PC的指令,其实这样规定就是把这8条指令当作是异常向量表来处理。必须注意的是第6条指令要包含将要装载的映像的大小。关于如何计算和写这条指令可以参考用户手册。一旦合法的映像找到之后,则BOOT程序会把找到的映像搬到SRAM中去,所以映像的大小是非常有限的,不能超过16K-3K的大小。当BOOT程序完成了把合法的映像搬到SRAM的任务以后,接下来就进行存储器的REMAP,经过REMAP之后,SRAM从映设前的0X200000地址处被映设到了0X0地址并且程序从0X0处开始执行。而ROM这时只能在0X100000这个地址处看到了。至此9200就算完成了一种形式的启动过程。如果BOOT程序在以上所列的几种存储设备中找到合法的映像,则自动初始化DEBUG USART口和USB DEVICE口以准备从外部载入映像。对DEBUG口的初始化包括设置参数115200 8 N 1以及运行XMODEM协议。对USB DEVICE进行初始化以及运行DFU协议。现在用户可以从外部(假定为PC平台)载入你的映像了。在PC平台下,以WIN2000为例,你可以用超级终端来完成这个功能,但是还是要注意你的映像的大小不能超过13K。一旦正确从外部装载了映像,接下来的过程就是和前面一样重映设然后执行映像了。我们上面讲了BMS为高电平,AT91RM9200选择从片内的ROM启动的一个过程。如果BMS为低电平,则AT91RM9200会从片外的FLASH启动,这时片外的FLASH的起始地址就是0X0了,接下来的过程和片内启动的过程是一样的,只不过这时就需要自己写启动代码了,至于怎么写,大致的内容和ROM的BOOT差不多,不同的硬件设计可能有不一样的地方,但基本的都是一样的。由于片外FLASH可以设计的大,所以这里编写的BOOTLOADER可以一步到位,也就是说不用像片内启动可能需要BOOT好几级了,目前AT91RM9200上使用较多的bootloer是u-boot,这是一个开放源代码的软件,用户可以自由下载并根据自己的应用配置。总的说来,笔者以为AT91RM9200的启动过程比较简单,ATMEL的服务也不错,不但提供了片内启动的功能,还提供了UBOOT可供下载。笔者写了一个BOOTLODER从片外的FLASHA启动,效果还可以。 uboot结构与使用uboot是一个庞大的公开源码的软件。他支持一些系列的arm体系,包含常见的外设的驱动,是一个功能强大的板极支持包。其代码可以 http://sourceforge.net/projects/u-boot下载 在9200上,为了启动uboot,还有两个boot软件包,分别是loader和boot。分别完成从sram和flash中的一级boot。其源码可以从atmel的官方网站下载。 我们知道,当9200系统上电后,如果bms为高电平,则系统从片内rom启动,这时rom中固化的boot程序初始化了debug口并向其发送'c',这时我们打开超级终端会看到ccccc...。这说明系统已经启动,同时xmodem协议已经启动,用户可以通过超级终端下载用户的bootloader。作为第一步,我们下载loader.bin.loader.bin将被下载到片内的sram中。这个loder完成的功能主要是初始化时钟,sdram和xmodem协议,为下载和启动uboot做准备。当下载了loader.bin后,超级终端会继续打印:ccccc....。这时我们就可以下在uboot了。uboot将被下载到sdram中的一个地址后并把pc指针调到此处开始执行uboot。接着我们就可以在终端上看到uboot的shell启动了,提示符uboot>,用户可以uboot>help 看到命令列表和大概的功能。uboot的命令包含了对内存、flash、网络、系统启动等一些命令。 如果系统上电时bms为低电平,则系统从片外的flash启动。为了从片外的flash启动uboot,我们必须把boot.bin放到0x0地址出,使得从flash启动后首先执行boot.bin,而要少些boot.bin,就要先完成上面我们讲的那些步骤,首先开始从片内rom启动uboot。然后再利用uboot的功能完成把boot.bin和uboot.gz烧写到flash中的目的,假如我们已经启动了uboot,可以这样操作: uboot>protect off all uboot>erase all uboot>loadb 20000000 uboot>cp.b 20000000 10000000 5fff uboot>loadb 21000000 uboot>cp.b 210000000 10010000 ffff 然后系统复位,就可以看到系统先启动boot,然后解压缩uboot.gz,然后启动uboot。注意,这里uboot必须压缩成.gz文件,否则会出错。 怎么编译这三个源码包呢,首先要建立一个arm的交叉编译环境,关于如何建立,此处不予说明。建立好了以后,分别解压源码包,然后修改Makefile中的编译器项目,正确填写你的编译器的所在路径。 对loader和boot,直接make。对uboot,第一步:make_at91rm9200dk,第二步:make。这样就会在当前目录下分别生成*.bin文件,对于uboot.bin,我们还要压缩成.gz文件。 也许有的人对loader和boot搞不清楚为什么要两个,有什么区别吗?首先有区别,boot主要完成从flash中启动uboot的功能,他要对uboot的压缩文件进行解压,除此之外,他和loader并无大的区别,你可以把boot理解为在loader的基础上加入了解压缩.gz的功能而已。所以这两个并无多大的本质不同,只是他们的使命不同而已。 特别说名的是这三个软件包都是开放源码的,所以用户可以根据自己的系统的情况修改和配置以及裁减,打造属于自己系统的bootloder。
上传时间: 2013-10-27
上传用户:wsf950131