TLC1551是美国TI公司生产的10位并行输出模数转换器,该器件转换速度快,传输数据方便,应用电路简单.文中介绍了TLC1551的管脚功能、电气特性、工作原理和时序、应用电路及模数转换的单片机基本程
上传时间: 2013-07-26
上传用户:amwfhv
指令集仿真器是目前嵌入式系统研究中一个极其重要的领域,一个灵活高效且准确度高的仿真器不仅可以实现对嵌入式系统硬件环境的仿真,而且是现代微处理器结构设计过程中性能评估的重要工具. 仿真器的性能已经成为影响整个设计效率的重要因素,在现有的指令集仿真技术中,编译型仿真技术虽然可以获得高的仿真速度,但其对应用的假设过于严格,限制了其在商业领域中的应用;解释型仿真器虽被普遍使用,但其缺点也很明显,由于模拟过程中需要耗费大量时间用于指令译码,解释型模拟器速度往往很有限,使用性能较低。由此可见,如何减少仿真过程中的指令译码时间,是提高仿真器的性能的关键。 本文旨在提出一个指令集仿真器的原型,重点解决指令解码过程中的速度瓶颈,在其基础可以进行扩充和改进,以适应不同硬件平台的需要。文章首先从ARM指令集的指令功能和编码格式入手,通过分析和比较找出了一般常用指令的编码和实现规律,并在此基础上进行了高级语言的描述,其后提出了改进版解释型指令集仿真器的设计方案,包括为提高仿真器性能,减少译码时间,创新性的在流程设计中加入了预解码的步骤,同时用自己设计的压缩算法解决了因预解码产生大量译码信息而带来的内存过度消耗难题。接下来,描述了仿真器的实现,包括指令的取指、译码、执行等基本功能,并着重描述了如何通过划分存储域和存储块的方式模拟真实存储器的读写访问实现。 另外,需要特别指出的是,针对仿真器中普遍存在的调试难问题,本文从一线程序开发人员的角度,在调试模块的设计中除了断点设置、程序暂停、恢复等基本功能外,还添加了各类监视设备和程序跟踪的功能,以期能提高本仿真器的实用性。 在文章的结尾,提出了仿真器的验证方案,并按照该方案对仿真器进行了功能和性能上的验证,最后对进一步的工作进行了展望。
上传时间: 2013-08-02
上传用户:宋桃子
射频识别技术(RFID,RadioFrequencyIdentification)是目前自动识别技术发展的趋势所在,更被誉为21世纪最重要的十大技术之一。当成本这一始终阻碍RFID得到全面发展的问题在全球各国政府政策的支持下得到解决后,RFID得到了前所未有的广泛发展和应用。在条形码逐步被RFID标签取代的今天,作为RFID系统核心组成部分的RFID阅读器,有着极其广泛的技术开发空间和市场前景。如何根据应用的需要,设计出性能良好、使用方便并且具有相当通用性的RFID阅读器产品,是众多企业和单位在应用中会遇到的课题。 本文首先简单介绍了RFID基本原理和RFID阅读器系统结构,然后结合工程项目的要求,介绍了一个基于ARM嵌入式平台的便携式RFID阅读器的设计实现的实例。在设计和实现过程中,首先进行了系统需求和特点的分析,结合系统便携化和功能复杂性方面的特点以及ARM嵌入式系统的优势制定了系统方案并进行了功能模块划分。然后在此基础上设计了各模块的硬件电路,编写了相应的驱动和测试程序。并且利用这些驱动和测试代码在ADS环境下通过JTAG接口对电路进行了调试和功能验证。接着采用802.11b/g方案对阅读器进行了无线组网的设计。此后在硬件系统的基础上,简述了Linux嵌入式操作系统下阅读器软件的开发。文章最后还介绍了将所设计实现的样机投入实际应用环境下的测试情况,详细描述了测试的内容、方法和结果。 文章试图通过对一个阅读器开发实例的详细介绍,提出一套完整的阅读器设计思路和流程,为学习和开发人员提供帮助。
上传时间: 2013-04-24
上传用户:hmr0452
本文以太阳能割草机器人为研究对象,以经济实用为研究目标,主要研究了太阳能割草机器人的定位行走、能量管理、基于ARM的控制硬件构成和软件设计以及嵌入式数据库系统构建等关键技术。 全区域覆盖路径规划一直是智能割草机研究的一个难点,本课题从相对定位入手,提出了一种以基站为参考原点建立全局坐标的方法,其为路径规划提供了准确的定位,消除了在路径规划过程中误差的积累。根据太阳能电池板及蓄电池混合供能的特点设计了能量的人工智能决策系统-Agent反应型决策系统,为能量的供应提供了优化的决策算法。控制系统是体现太阳能割草机器人智能化水平的关键部分,根据应用要求,结合结构简单实用的理念,设计了太阳能割草机器人基于ARM中心控制模块、电机控制模块、传感器系统以及定位系统模块的硬件部分。在硬件设计的基础上设计了操作系统以及嵌入式数据库系统,并给出了每个模块具体的算法。 本文主要研究的太阳能割草机器人控制系统,提供了一套低成本、切实可行的设计方案,具有一定的理论意义和实用价值。
上传时间: 2013-04-24
上传用户:WANGLIANPO
300W 12V输入正弦波逆变器 300W 12V输入正弦波逆变器
上传时间: 2013-06-01
上传用户:firstbyte
嵌入式系统在众多工业领域扮演着越来越重要的角色,但是因嵌入式系统的资源受限缘故,导致在嵌入式系统上很难实现复杂计算算法。此外,当前嵌入式系统设计阶段和实现阶段的分离现状,致使嵌入式系统开发耗时且昂贵。为解决这些问题,本书提出了一种低成本、可重复使用且可重构的嵌入式系统设计与实现集成开发环境。为了减少成本,该集成环境全部是采用自由和开放源代码软件,如Linux操作系统和Scilab计算平台等。 本文主要包括以下内容: 1、构建嵌入式Linux开发环境及移植相关软件包到嵌入式ARM平台,首先详细的描述了如何使用Buildroot工具包制作交叉编译器,并描述Minicom、TFTP和NFS等嵌入式开发相关工具,最后详细的描述了如何移植嵌入式图形用户界面TinyX和嵌入式窗口管理器JWM。 2、构建Scilab-EMB嵌入式计算平台,首先介绍了数值计算软件Scilab,然后详细的描述了如何在ARM系统上实现Scilab-EMB嵌入式计算平台。 3、开发Scilab数据采集工具包,实现Scilab与底层设备通讯,该工具包PC版和ARM版均支持串口和以太网接口,且均支持Modbus现场总线。PC版额外支持OPC协议。 4、基于Scilab构建虚拟控制实验室,验证该平台的可行性及性能。 本文创新点: 1、国内外率先提出了一种新的以Scilab为核心的嵌入式计算平台方案,并在国内外首次实现了Scilab到ARM平台的移植; 2、开发了Scilab-DAQ数据采集工具包,有效的实现了Scilab与底层设备的通讯。 通过虚拟实验室的建立,验证了该嵌入式控制平台能够胜任多种复杂算法。 该嵌入式计算平台解决方案和Scilab-DAQ数据采集工具包已经受到国内外同行的关注,并被多家科研机构、学校和公司所采纳和使用。
标签: Scilab-EMB ARM-Linux 嵌入式 计算
上传时间: 2013-05-30
上传用户:acon
随着数字信息技术和网络技术的高速发展,智能信息化家电已成为现代社会和家庭的新时尚,也是嵌入式系统的最大应用领域。 本文基于ARM-Linux嵌入式系统开发彰显冰箱智能信息化的显示单元。 通过对嵌入式微处理器进行分析,设计了基于AT91SAM9261系统架构的硬件电路,主要包括核心控制板的外部总线接口EBI电路、作为内存的SDRAM模块电路和存储数据的Nand_DataFlash模块电路,外围电路板的液晶显示屏TFT-LCD接口电路、触摸按键电路、LCD的CCFL背光电路和SP3232通信电路及电源电路等,对各个模块进行了分析,给出了硬件原理图。 对四种嵌入式操作系统Linux、VxWorks、μC/OS-Ⅱ和Windows CE进行了比较,完成了操作系统的选型,搭建了交叉编译环境ARM—Linux的开发平台。 在完成了GAL和IAL,移植的基础上,利用MiniGUI开发应用软件程序,给出MiniGUI应用程序的设计流程图,编写设置主窗口风格的入口函数MiniGUIMain、处理按键和定时器消息的主窗口处理函数LoadBmpProc、实现窗口显示的程序文件display和loadbmp以及参照通讯协议和网络家电协议实现通信功能的程序文件nand。 通过系统调试和整机实验,实现了冰箱显示单元的智能信息化。可以由触摸按键或是远程电脑来控制冰箱,液晶显示器上播放动画、图片和文本信息;冰箱还可将工作状态和报警信息上传到网络,利于冰箱的远程监控和升级维护。目前此项研究成果已用于产品的生产。
上传时间: 2013-07-18
上传用户:shenglei_353
本文以无线多媒体终端项目的需求为背景,提出了一种适用于嵌入式系统的媒体播放器架构设计方案。论文给出了一种嵌入式系统中音视频同步的解决方案,有效的提高了嵌入式媒体播放器软件的音视频同步性能
上传时间: 2013-07-05
上传用户:qulele
- vii - 8.1.1 实验目的 315 8.1.2 实验设备 315 8.1.3 实验内容 315 8.1.4 实验原理 315 8.1.5 实验操作步骤 318 8.1.6 实验参考程序 319 8.1.7 练习题 321- vi - 6.4 USB 接口实验 266 6.4.1 实验目的 266 6.4.2 实验设备 267 6.4.3 实验内容 267 6.4.4 实验原理 267 6.4.5 实验操作步骤 270 6.4.6 实验参考程序 272 6.4.7 实验练习题 280 6.5 SPI接口通讯实验 281 6.5.1 实验目的 281 6.5.2 实验设备 281 6.5.3 实验内容 281 6.5.4 实验原理 281 6.5.5 实验操作步骤 285 6.5.6 实验参考程序 287 6.5.7 练习题 289 6.6 红外模块控制实验 289 6.6.1 实验目的 289 6.6.2 实验设备 289 6.6.3 实验内容 289 6.6.4 实验原理 289 6.6.5 实验操作步骤 291 6.6.6 实验参考程序 291 6.6.7 练习题 296 第七章 基础应用实验 296 7.1 A/D 转换实验 296 7.1.1 实验目的 296 7.1.2 实验设备 296 7.1.3 实验内容 296 7.1.4 实验原理 296 7.1.5 实验设计 298 7.1.6 实验操作步骤 299 7.1.7 实验参考程序 300 7.1.8 练习题 301 7.2 PWM步进电机控制实验 301 7.2.1 实验目的 301 7.2.2 实验设备 301 7.2.3 实验内容 301 7.2.4 实验原理 301 7.2.5 实验操作步骤 309 7.2.6 实验参考程序 311 7.2.7 练习题 313 第八章 高级应用实验 315 8.1 GPRS模块控制实验 315 - v - 5.2 5x4键盘控制实验 219 5.2.1 实验目的 219 5.2.2 实验设备 219 5.2.3 实验内容 219 5.2.4 实验原理 219 5.2.5 实验设计 221 5.2.6 实验操作步骤 222 5.2.7 实验参考程序 223 5.2.8 练习题 224 5.3 触摸屏控制实验 224 5.3.1 实验目的 224 5.3.2 实验设备 224 5.3.3 实验内容 224 5.3.4 实验原理 224 5.3.5 实验设计 231 5.3.6 实验操作步骤 231 5.3.7 实验参考程序 232 5.3.8 练习题 233 第六章 通信与接口实验 234 6.1 IIC 串行通信实验 234 6.1.1 实验目的 234 6.1.2 实验设备 234 6.1.3 实验内容 234 6.1.4 实验原理 234 6.1.5 实验设计 238 6.1.6 实验操作步骤 241 6.1.7 实验参考程序 243 6.1.8 练习题 245 6.2 以太网通讯实验 246 6.2.1 实验目的 246 6.2.2 实验设备 246 6.2.3 实验内容 246 6.2.4 实验原理 246 6.2.5 实验操作步骤 254 6.2.6 实验参考程序 257 6.2.7 练习题 259 6.3 音频接口 IIS 实验 260 6.3.1 实验目的 260 6.3.2 实验设备 260 6.3.3 实验内容 260 6.3.4 实验原理 260 6.3.5 实验步骤 263 6.3.6实验参考程序 264 6.3.7 练习题 266 - iv - 4.4 串口通信实验 170 4.4.1 实验目的 170 4.4.2 实验设备 170 4.4.3 实验内容 170 4.4.4 实验原理 170 4.4.5 实验操作步骤 176 4.4.6 实验参考程序 177 4.4.7 练习题 178 4.5 实时时钟实验 179 4.5.1 实验目的 179 4.5.2 实验设备 179 4.5.3 实验内容 179 4.5.4 实验原理 179 4.5.5 实验设计 181 4.5.6 实验操作步骤 182 4.5.7 实验参考程序 183 4.6.8 练习题 185 4.6 数码管显示实验 186 4.6.1 实验目的 186 4.6.2 实验设备 186 4.6.3 实验内容 186 4.6.4 实验原理 186 4.6.5 实验方法与操作步骤 188 4.6.6 实验参考程序 189 4.6.7 练习题 192 4.7 看门狗实验 193 4.7.1 实验目的 193 4.7.2 实验设备 193 4.7.3 实验内容 193 4.7.4 实验原理 193 4.7.5 实验设计 195 4.7.6 实验操作步骤 196 4.7.7 实验参考程序 197 4.7.8 实验练习题 199 第五章 人机接口实验 200 5.1 液晶显示实验 200 5.1.1 实验目的 200 5.1.2 实验设备 200 5.1.3 实验内容 200 5.1.4 实验原理 200 5.1.5 实验设计 211 5.1.6 实验操作步骤 213 5.1.7 实验参考程序 214 5.1.8 练习题 219 - ii - 3.1.1 实验目的 81 3.1.2 实验设备 81 3.1.3 实验内容 81 3.1.4 实验原理 81 3.1.5 实验操作步骤 83 3.1.6 实验参考程序 87 3.1.7 练习题 88 3.2 ARM汇编指令实验二 89 3.2.1 实验目的 89 3.2.2 实验设备 89 3.2.3 实验内容 89 3.2.4 实验原理 89 3.2.5 实验操作步骤 90 3.2.6 实验参考程序 91 3.2.7 练习题 94 3.3 Thumb 汇编指令实验 94 3.3.1 实验目的 94 3.3.2 实验设备 94 3.3.3 实验内容 94 3.3.4 实验原理 94 3.3.5 实验操作步骤 96 3.3.6 实验参考程序 96 3.3.7 练习题 99 3.4 ARM处理器工作模式实验 99 3.4.1 实验目的 99 3.4.2实验设备 99 3.4.3实验内容 99 3.4.4实验原理 99 3.4.5实验操作步骤 101 3.4.6实验参考程序 102 3.4.7练习题 104 3.5 C 语言程序实验一 104 3.5.1 实验目的 104 3.5.2 实验设备 104 3.5.3 实验内容 104 3.5.4 实验原理 104 3.5.5 实验操作步骤 106 3.5.6 实验参考程序 106 3.5.7 练习题 109 3.6 C 语言程序实验二 109 3.6.1 实验目的 109 3.6.2 实验设备 109 3.6.3 实验内容 109 3.6.4 实验原理 109 - iii - 3.6.5 实验操作步骤 111 3.6.6 实验参考程序 113 3.6.7 练习题 117 3.7 汇编与 C 语言的相互调用 117 3.7.1 实验目的 117 3.7.2 实验设备 117 3.7.3 实验内容 117 3.7.4 实验原理 117 3.7.5 实验操作步骤 118 3.7.6 实验参考程序 119 3.7.7 练习题 123 3.8 综合实验 123 3.8.1 实验目的 123 3.8.2 实验设备 123 3.8.3 实验内容 123 3.8.4 实验原理 123 3.8.5 实验操作步骤 124 3.8.6 参考程序 127 3.8.7 练习题 134 第四章 基本接口实验 135 4.1 存储器实验 135 4.1.1 实验目的 135 4.1.2 实验设备 135 4.1.3 实验内容 135 4.1.4 实验原理 135 4.1.5 实验操作步骤 149 4.1.6 实验参考程序 149 4.1.7 练习题 151 4.2 IO 口实验 151 4.2.1 实验目的 151 4.2.2 实验设备 152 4.2.3 实验内容 152 4.2.4 实验原理 152 4.2.5 实验操作步骤 159 4.2.6 实验参考程序 160 4.2.7 实验练习题 161 4.3 中断实验 161 4.3.1 实验目的 161 4.3.2 实验设备 161 4.3.3 实验内容 161 4.3.4 实验原理 162 4.3.5 实验操作步骤 165 4.3.6 实验参考程序 167 4.3.7 练习题 170 目 录 I 第一章 嵌入式系统开发与应用概述 1 1.1 嵌入式系统开发与应用 1 1.2 基于 ARM的嵌入式开发环境概述 3 1.2.1 交叉开发环境 3 1.2.2 模拟开发环境 4 1.2.3 评估电路板 5 1.2.4 嵌入式操作系统 5 1.3 各种 ARM开发工具简介 5 1.3.1 ARM的 SDT 6 1.3.2 ARM的ADS 7 1.3.3 Multi 2000 8 1.3.4 Embest IDE for ARM 11 1.3.5 OPENice32-A900仿真器 12 1.3.6 Multi-ICE 仿真器 12 1.4 如何学习基于 ARM嵌入式系统开发 13 1.5 本教程相关内容介绍 14 第二章 EMBEST ARM实验教学系统 17 2.1 教学系统介绍 17 2.1.1 Embest IDE 集成开发环境 17 2.1.2 Embest JTAG 仿真器 19 2.1.3 Flash 编程器 20 2.1.4 Embest EduKit-III开发板 21 2.1.5 各种连接线与电源适配器 23 2.2 教学系统安装 23 2.3 教学系统的硬件电路 27 2.3.1 概述 27 2.3.2 功能特点 27 2.3.3 原理说明 28 2.3.4 硬件结构 41 2.3.5 硬件资源分配 44 2.4 集成开发环境使用说明 51 2.4.1 Embest IDE 主框架窗口 51 2.4.2 工程管理 52 2.4.3 工程基本配置 55 2.4.4 工程的编译链接 71 2.4.5 加载调试 72 2.4.6 Flash编程工具 80 第三章 嵌入式软件开发基础实验 81 3.1 ARM汇编指令实验一 81
上传时间: 2013-04-24
上传用户:xaijhqx
SystemView的库资源十分丰富,包括含若干图标的基本库(Main Library)及专业库(Optional Library),基本库中包括多种信号源、接收器、加法器、乘法器,各种函数运算器等;专业库有通讯(Communication)、逻辑(Logic)、数字信号处理(DSP)、射频/模拟(RF/Analog)等;它们特别适合于现代通信系统的设计、仿真和方案论证,尤其适合于无线电话、无绳电话、寻呼机、调制解调器、卫星通讯等通信系统;并可进行各种系统时域和频域分析、谱分析,及对各种逻辑电路、射频/模拟电路(混合器、放大器、RLC电路、运放电路等)进行理论分析和失真分析。 System View能自动执行系统连接检查,给出连接错误信息或尚悬空的待连接端信息,通知用户连接出错并通过显示指出出错的图标。这个特点对用户系统的诊断是十分有效的。 System View的另一重要特点是它可以从各种不同角度、以不同方式,按要求设计多种滤波器,并可自动完成滤波器各指标—如幅频特性(伯特图)、传递函数、根轨迹图等之间的转换。 在系统设计和仿真分析方面,System View还提供了一个真实而灵活的窗口用以检查、分析系统波形。在窗口内,可以通过鼠标方便地控制内部数据的图形放大、缩小、滚动等。另外,分析窗中还带有一个功能强大的“接收计算器”,可以完成对仿真运行结果的各种运算、谱分析、滤波。 System View还具有与外部文件的接口,可直接获得并处理输入/输出数据。提供了与编程语言VC++或仿真工具Matlab的接口,可以很方便的调用其函数。还具备与硬件设计的接口:与Xilinx公司的软件Core Generator配套,可以将System View系统中的部分器件生成下载FPGA芯片所需的数据文件;另外,System View还有与DSP芯片设计的接口,可以将其DSP库中的部分器件生成DSP芯片编程的C语言源代码。
标签: SYSTEMVIEW 教材
上传时间: 2013-04-24
上传用户:doudouzdz