1.系统总体控制方案的确定。通过了解和分析国内外摩托车用发动机控制技术的发展现状,提出采用无回油燃油供给系统、电子控制进气道喷射、直流双电容点火加三元催化转化器的总方案。通过测量进气压力与发动机转速来确定基本喷油脉宽和基本点火提前角,根据蓄电池电压、缸体温度以及节气门开度等信号来修正喷油脉宽。在高速大负荷工况下,利用爆震传感器对点火提前角进行闭环控制。控制系统中的执行器主要包括电容点火式高压包、燃油泵和喷油器。2.电子控制单元ECU(electric control unit)的硬件电路设计。根据系统的设计目标自主开发了ECU的硬件电路,硬件电路的主要功能模块包括发动机信号采集与处理、执行器的驱动、直流反激式升压电路、电容充放电控制电路、微控制器控制电路及与上位机通信电路等,试验证明这些电路模块的性能稳定可靠。3.发动机控制软件及上位机标定软件的设计。研究了发动机在各工况下的点火和喷油、怠速、安全保护等控制策略,并且自行开发了与之相匹配的上位机标定软件和通信协议。4.完成了发动机台架标定试验。通过上位机标定软件和发动机台架完成对ECU控制策略的验证以及参数标定,并对比分析了本电控系统发动机与原化油器发动机的万有特性和排放性能。
标签: arm cortex-m0 摩托车发动机控制系统
上传时间: 2022-07-12
上传用户:
主控平台:UC2844拓扑:双管反激描述:本方案为大功率电源的辅助电源部分,可接受三相市电输入、三相旁路输入、电池输入、输入电压最高可支持1000VDC提供24V、+12V、-12V、+5V以及高频输出(可供后级隔离驱动电源使用)
标签: 双管反激
上传时间: 2022-07-26
上传用户:
第01讲-电子元器件-电阻.mp4 第02讲-电子元器件-电感电容保险丝.mp4 第03讲-电子元器件-IC变压器运算放大器.mp4 第04讲-电子元器件-TL431光耦.mp4 第05讲-电子元器件-二极管.mp4 第06讲-电子元器件-三极管.mp4 第07讲-电子元器件-MOS管.mp4 第08讲-电源常识-安规-PCB-插头.mp4 第09讲-电源常识差模共模干扰-EMI-变压器.mp4 第10讲-电源常识-雷击-静电-耐压-功率因素(1).mp4 第11讲-变压器设计.mp4 第12讲-变压器感量设计.mp4 第13讲-变压器绕制.mp4 第14讲-变压器效率.mp4 第15讲-绕制变压器实操.mp4 第16讲-电路原理反激式.mp4 第17讲-电路原理LM358.mp4 第18讲-BUCK电路原理.mp4 第19讲-快充QC2.0-QC3.0.mp4 第20讲-同步整流详解.mp4 第21讲-PFC电路详解.mp4 第22讲-BOOST电路原理.mp4 第23讲-RCC电路详解.mp4 …………
上传时间: 2013-04-15
上传用户:eeworm
第01讲-电子元器件-电阻.mp4 第02讲-电子元器件-电感电容保险丝.mp4 第03讲-电子元器件-IC变压器运算放大器.mp4 第04讲-电子元器件-TL431光耦.mp4 第05讲-电子元器件-二极管.mp4 第06讲-电子元器件-三极管.mp4 第07讲-电子元器件-MOS管.mp4 第08讲-电源常识-安规-PCB-插头.mp4 第09讲-电源常识差模共模干扰-EMI-变压器.mp4 第10讲-电源常识-雷击-静电-耐压-功率因素(1).mp4 第11讲-变压器设计.mp4 第12讲-变压器感量设计.mp4 第13讲-变压器绕制.mp4 第14讲-变压器效率.mp4 第15讲-绕制变压器实操.mp4 第16讲-电路原理反激式.mp4 第17讲-电路原理LM358.mp4 第18讲-BUCK电路原理.mp4 第19讲-快充QC2.0-QC3.0.mp4 第20讲-同步整流详解.mp4 第21讲-PFC电路详解.mp4 第22讲-BOOST电路原理.mp4 第23讲-RCC电路详解.mp4 …………
上传时间: 2013-06-03
上传用户:eeworm
风光互补发电系统作为新能源技术应用的重要组成部分越来越受到人们的青睐,所以将此作为新能源研究的切入点,进行一些有益的尝试和探索。 本文从太阳能电池的光生伏打效应入手,推导出太阳能电池的U-I曲线,并以此作为最大功率跟踪(MPPT)技术的理论基础。针对小风机的发电技术也存在的MPPT技术,文章进行了统一性研究,给出了新的控制策略--变步长扰动观察控制。为了提高系统的充放电效率,文章还对三段式充放电、均衡充电、温度补偿等蓄电池充电理论进行了阐述。 根据上述理论,结合工程实际,设计了风光互补控制器的电路。利用电压霍尔和电流霍尔实现了风机电压、太阳能电池电压、蓄电池电压和充电电流的实时采样,利用TMS320F2812DSP的EVA与AD模块软件实现对蓄电池欠压、过压、运行等模式的智能充放电管理。针对风力发电机的输出电压波动大的问题,系统提供了硬件和软件的风机过速智能保护系统。本系统采用MPPT的控制策略提高了整个系统的效率,设计提供了一套LCD显示界面和一组LED指示灯增强系统管理的友好性。为了解决风光互补控制器芯片的供电问题,设计了一套以UC3843PWM芯片为核心的反激式辅助电源。该电源用硬件实现了电流内环、电压外环的双环控制策略,提高了系统供电的可靠性和稳定性。 研制出了一台风光互补控制器样机,进行了有关实验、检测与调试。实验波形和数据都显示该系统运行稳定可靠,达到了设计要求。该方案可为风光互补控制器的工程设计提供一定的参考。
上传时间: 2013-04-24
上传用户:diets
LT®3837 從一個 4.5V 至 20V 輸入獲取工作電壓,但可通過采用一個 VCC 穩壓器和 / 或變壓器上的一個偏壓繞組使該轉換器的輸入範圍向上擴展。
上传时间: 2013-11-01
上传用户:
系统介绍电源设计
标签: LinkSwitch-LP 反激式 设计指南
上传时间: 2013-10-25
上传用户:lyy1234
电子发烧友网:本文是小编从电子发烧友网论坛上淘过来的,觉得内容还可以,所以在这里跟大家一起分享分享。电源设计专家亲授电源设计秘诀,助您的设计一臂之力! 一 反激式电源中的铁氧体磁放大器 对于两个输出端都提供实际功率(5 V 2 A 和 12 V 3 A,两者都可实现± 5%调节)的双路输出反激式电源来说,当电压达到 12 V 时会进入零负载状态,而无法在 5%限度内进行调节。线性稳压器是一个可实行的解决方案,但由于价格昂贵且会降低效率,仍不是理想的解决方案。我们建议的解决方案是在 12 V 输出端使用一个磁放大器,即便是反激式拓扑结构也可使用。 为了降低成本,建议使用铁氧体磁放大器。然而,铁氧体磁放大器的控制电路与传统的矩形磁滞回线材料(高磁导率材料)的控制电路有所不用。铁氧体的控制电路(D1 和 Q1)可吸收电流以便维持输出端供电。该电路已经过全面测试。变压器绕组设计为 5 V 和 13 V 输出。该电路在实现 12 V 输出± 5%调节的同时,甚至还可以达到低于 1 W 的输入功率(5 V 300 mW和12V零负载)
上传时间: 2013-10-30
上传用户:lwq11
While simplicity and high effi ciency (for cool running) areno longer optional features in isolated power supplies, itis traditionally diffi cult to achieve both. Achieving higheffi ciency often requires the use of advanced topologiesand home-brewed secondary synchronous rectifi cationschemes once reserved only for higher power applications.This only adds to the parts count and to the designcomplexity associated with the reference and optocouplercircuits typically used to maintain isolation. Fortunately, abreakthrough IC makes it possible to achieve both high efficiency and simplicity in a synchronous fl yback topology.The LT®3825 simplifi es and improves the performance oflow voltage, high current fl yback supplies by providingprecise synchronous rectifi er timing and eliminating theneed for optocoupler feedback while maintaining excellentregulation and superior loop response.
上传时间: 2013-10-16
上传用户:wayne595
To this day, Power over Ethernet (PoE) continues to gainpopularity in today’s networking world. The 12.95Wdelivered to the Powered Device (PD) input supplied bythe Power Sourcing Equipment (PSE) is a universal supply.Each PD provides its own DC/DC conversion from anominal 48V supply, thus eliminating the need for a correctvoltage wall adapter. However, higher power devicescan not take advantage of standard PoE because of itspower limitations, and must rely on a large wall adapteras their primary supply. The new LTC4268-1 breaks thispower barrier by allowing for power of up to 35W for suchpower-hungry 2-pair PoE applications. The LTC4268-1provides a complete solution by integrating a high powerPD interface control with an isolated fl yback controller.
上传时间: 2014-12-24
上传用户:jasson5678