虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

双向电平转换电路

  • 内置看门狗的电压监控器电路设计与选型指南

    复位监控器件内部集成精确的电压监控电路,可通过确定的阈值电压启动复位操作,同时排除瞬间干扰的影响,又可以防止MCU在电源启动和关闭期间的误操作,保证数据安全。通常,传统的RC复位电路是不可靠的,如果一个计算机系统的复位不可靠将带来意想不到的麻烦。选择一款合适的复位器件有利于提高系统的可靠性和性价比。可是,用户需要如何选择才能找到一款适合自己系统的复位器件呢?在选择复位器件之前,首先我们需要对系统需求做一剖析,如:该系统是多少伏的系统?是高电平复位还是低电平复位,还是同时需要用到高电平复位和低电平复位?除了复位功能,您的系统是否需要用到看门狗、E2PROM等器件?在您的PCB电路设计中给复位芯片预留了多大的空间?解决了以上问题我们接下来看如何选择合适的复位器件:

    标签: 内置 看门狗 电压监控器 电路设计

    上传时间: 2013-11-25

    上传用户:lizhen9880

  • 基于NB7232的触摸开关电路设计

       触摸开关电路也叫触摸式调光、开关控制电路,主要用于生活中白炽灯光的控制。它与一个主要由双向可控硅组成的外围电路一起对光源进行调光、开关的触摸式控制,并具有记忆功能。摆脱了传统的机械拨动开关、电位器调光的形式,是一种新颖的升级换代产品。电路由输入缓冲器、锁相环、控制逻辑、亮度记忆、相角指针、数字比较器和输出驱动器组成。其框图见图1

    标签: 7232 NB 触摸开关 电路设计

    上传时间: 2013-11-11

    上传用户:tiantwo

  • 中压五电平单元级联变频器的研究与设计

    波形质量更好。论文介绍了五电平功率单元级联变频器的主电路拓扑结构特点、探讨了输入移相整流技术,运用坐标变换的方法推导和分析了单元级联变频器及异步电机矢量控制系统的数学模型。研究和比较了级联式变频器的几种PWM算法的特点,并选取载波相移层叠混合PWM方式为变频器的控制方式。提出了三点式五电平功率单元的开关控制策略,以及单元平衡控制的解决方案。并研究了矢量控制方法在中压级联变频器系统的应用。研究和完成了控制系统的软件、硬件方案设计,对于系统的两级旁路保护与实现、在线故障识别系统,DSP/CPLD冗余控制系统等关键技术进行了研究。同时对采取该变频器供电的异步电机PWM控制系统和异步电机矢量控制系统分别进行了仿真研究,成功研制了中压五电平单元级联变频器样机。在不同负载和不同实验条件下对变频器样机进行了满功率大电流实验,结果表明五电平功率单元级联变频器输出稳定,动态响应好,得到了满意的预期效果。论文最后对研究工作进行了总结,并提出了一些需要进一步探讨和解决的问题。

    标签: 中压 电平 变频器 级联

    上传时间: 2013-11-12

    上传用户:上善若水

  • 锂电池充电控制器MAX1811的引脚参数及电路

      锂电池充电控制器MAX1811的引脚参数及电路   MAX1811是美信公司生产的USB接口单节锂电池充电控制器,它可以直接由USB端口供电,或由其他外部电源供电,电源电压可达+6.5V。   1 特性   MAX1811无须微处理器控制,最大充电电压可由引脚设置为4.1 V或4.2 V,最大误差为0.5%。   MAX1811对电池充电电流可通过逻辑控制电路置为100mA或500mA,符合USB的电流标准。MAX1811工作于线性模式,无须外部电感,内置的MOSFET功率开关有效节省了线路板尺寸。   当采用U部端口电源给电池充电时,对于低功率USB端口,应将MAX1811芯片的SETI端电位拉低,其充电电流设定为100mA,对于高功率的USB端口,应将MAX1811芯片的SETI引脚接高电平,此时充电电流设定为500mA;将5ETV端接高电平或接低电平,锂电池的充电电压分别被设置为4.2 V或4.1 V。MAX1811的CHG端允许芯片在充电期间点亮LED。

    标签: 1811 MAX 锂电池充电 控制器

    上传时间: 2013-10-31

    上传用户:完玛才让

  • 光电隔离器6N137应用

     6N137的结构原理如图1所示,信号从脚2和脚3输入,发光二极管发光,经片内光通道传到光敏二极管,反向偏置的光敏管光照后导通,经电流-电压转换后送到与门的一个输入端,与门的另一个输入为使能端,当使能端为高时与门输出高电平,经输出三极管反向后光电隔离器输出低电平。当输入信号电流小于触发阈值或使能端为低时,输出高电平,但这个逻辑高是集电极开路的,可针对接收电路加上拉电阻或电压调整电路。

    标签: 6N137 光电隔离器

    上传时间: 2014-03-24

    上传用户:skhlm

  • 单片机实现5v电压ad转换

    基于stc12c5a60s2制作的电压数模转换实验,内带电路及测试程序。讲解详尽。值得下载学习。

    标签: 单片机 电压 转换

    上传时间: 2013-10-27

    上传用户:墙角有棵树

  • MCS-51单片机应用设计

    本书从应用的角度,详细地介绍了MCS-51单片机的硬件结构、指令系统、各种硬件接口设计、各种常用的数据运算和处理程序及接口驱动程序的设计以及MCS-51单片机应用系统的设计,并对MCS-51单片机应用系统设计中的抗干扰技术以及各种新器件也作了详细的介绍。本书突出了选取内容的实用性、典型性。书中的应用实例,大多来自科研工作及教学实践,且经过检验,内容丰富、翔实。   本书可作为工科院校的本科生、研究生、专科生学习MCS-51单片机课程的教材,也可供从事自动控制、智能仪器仪表、测试、机电一体化以及各类从事MCS-51单片机应用的工程技术人员参考。 第一章 单片微型计等机概述   1.1 单片机的历史及发展概况   1.2 单片机的发展趋势   1.3 单片机的应用   1.3.1 单片机的特点   1.3.2 单片机的应用范围   1.4 8位单片机的主要生产厂家和机型   1.5 MCS-51系列单片机 第二章 MCS-51单片机的硬件结构   2.1 MCS-51单片机的硬件结构   2.2 MCS-51的引脚   2.2.1 电源及时钟引脚   2.2.2 控制引脚   2.2.3 I/O口引脚   2.3 MCS-51单片机的中央处理器(CPU)   2.3.1 运算部件   2.3.2 控制部件   2.4 MCS-51存储器的结构   2.4.1 程序存储器   2.4.2 内部数据存储器   2.4.3 特殊功能寄存器(SFR)   2.4.4 位地址空间   2.4.5 外部数据存储器   2.5 I/O端口   2.5.1 I/O口的内部结构   2.5.2 I/O口的读操作   2.5.3 I/O口的写操作及负载能力   2.6 复位电路   2.6.1 复位时各寄存器的状态   2.6.2 复位电路   2.7 时钟电路   2.7.1 内部时钟方式   2.7.2 外部时钟方式   2.7.3 时钟信号的输出 第三章 MCS-51的指令系统   3.1 MCS-51指令系统的寻址方式   3.1.1 寄存器寻址   3.1.2 直接寻址   3.1.3 寄存器间接寻址   3.1.4 立即寻址   3.1.5 基址寄存器加变址寄存器间址寻址   3.2 MCS-51指令系统及一般说明   3.2.1 数据传送类指令   3.2.2 算术操作类指令   3.2.3 逻辑运算指令   3.2.4 控制转移类指令   3.2.5 位操作类指令 第四章 MCS-51的定时器/计数器   4.1 定时器/计数器的结构   4.1.1 工作方式控制寄存器TMOD   4.1.2 定时器/计数器控制寄存器TCON   4.2 定时器/计数器的四种工作方式   4.2.1 方式0   4.2.2 方式1   4.2.3 方式2   4.2.4 方式3   4.3 定时器/计数器对输入信号的要求   4.4 定时器/计数器编程和应用   4.4.1 方式o应用(1ms定时)   4.4.2 方式1应用   4.4.3 方式2计数方式   4.4.4 方式3的应用   4.4.5 定时器溢出同步问题   4.4.6 运行中读定时器/计数器   4.4.7 门控制位GATE的功能和使用方法(以T1为例) 第五章 MCS-51的串行口   5.1 串行口的结构   5.1.1 串行口控制寄存器SCON   5.1.2 特殊功能寄存器PCON   5.2 串行口的工作方式   5.2.1 方式0   5.2.2 方式1   5.2.3 方式2   5.2.4 方式3   5.3 多机通讯   5.4 波特率的制定方法   5.4.1 波特率的定义   5.4.2 定时器T1产生波特率的计算   5.5 串行口的编程和应用   5.5.1 串行口方式1应用编程(双机通讯)   5.5.2 串行口方式2应用编程   5.5.3 串行口方式3应用编程(双机通讯) 第六章 MCS-51的中断系统   6.1 中断请求源   6.2 中断控制   6.2.1 中断屏蔽   6.2.2 中断优先级优   6.3 中断的响应过程   6.4 外部中断的响应时间   6.5 外部中断的方式选择   6.5.1 电平触发方式   6.5.2 边沿触发方式   6.6 多外部中断源系统设计   6.6.1 定时器作为外部中断源的使用方法   6.6.2 中断和查询结合的方法   6.6.3 用优先权编码器扩展外部中断源 第七章 MCS-51单片机扩展存储器的设计   7.1 概述   7.1.1 只读存储器   7.1.2 可读写存储器   7.1.3 不挥发性读写存储器   7.1.4 特殊存储器   7.2 存储器扩展的基本方法   7.2.1 MCS-51单片机对存储器的控制   7.2.2 外扩存储器时应注意的问题   7.3 程序存储器EPROM的扩展   7.3.1 程序存储器的操作时序   7.3.2 常用的EPROM芯片   7.3.3 外部地址锁存器和地址译码器   7.3.4 典型EPROM扩展电路   7.4 静态数据存储的器扩展   7.4.1 外扩数据存储器的操作时序   7.4.2 常用的SRAM芯片   7.4.3 64K字节以内SRAM的扩展   7.4.4 超过64K字节SRAM扩展   7.5 不挥发性读写存储器扩展   7.5.1 EPROM扩展   7.5.2 SRAM掉电保护电路   7.6 特殊存储器扩展   7.6.1 双口RAMIDT7132的扩展   7.6.2 快擦写存储器的扩展   7.6.3 先进先出双端口RAM的扩展 第八章 MCS-51扩展I/O接口的设计   8.1 扩展概述   8.2 MCS-51单片机与可编程并行I/O芯片8255A的接口   8.2.1 8255A芯片介绍   8.2.2 8031单片机同8255A的接口   8.2.3 接口应用举例   8.3 MCS-51与可编程RAM/IO芯片8155H的接口   8.3.1 8155H芯片介绍   8.3.2 8031单片机与8155H的接口及应用   8.4 用MCS-51的串行口扩展并行口   8.4.1 扩展并行输入口   8.4.2 扩展并行输出口   8.5 用74LSTTL电路扩展并行I/O口   8.5.1 用74LS377扩展一个8位并行输出口   8.5.2 用74LS373扩展一个8位并行输入口   8.5.3 MCS-51单片机与总线驱动器的接口   8.6 MCS-51与8253的接口   8.6.1 逻辑结构与操作编址   8.6.2 8253工作方式和控制字定义   8.6.3 8253的工作方式与操作时序   8.6.4 8253的接口和编程实例 第九章 MCS-51与键盘、打印机的接口   9.1 LED显示器接口原理   9.1.1 LED显示器结构   9.1.2 显示器工作原理   9.2 键盘接口原理   9.2.1 键盘工作原理   9.2.2 单片机对非编码键盘的控制方式   9.3 键盘/显示器接口实例   9.3.1 利用8155H芯片实现键盘/显示器接口   9.3.2 利用8031的串行口实现键盘/显示器接口   9.3.3 利用专用键盘/显示器接口芯片8279实现键盘/显示器接口   9.4 MCS-51与液晶显示器(LCD)的接口   9.4.1 LCD的基本结构及工作原理   9.4.2 点阵式液晶显示控制器HD61830介绍   9.5 MCS-51与微型打印机的接口   9.5.1 MCS-51与TPμp-40A/16A微型打印机的接口   9.5.2 MCS-51与GP16微型打印机的接口   9.5.3 MCS-51与PP40绘图打印机的接口   9.6 MCS-51单片机与BCD码拨盘的接口设计   9.6.1 BCD码拨盘   9.6.2 BCD码拨盘与单片机的接口   9.6.3 拨盘输出程序   9.7 MCS-51单片机与CRT的接口   9.7.1 SCIBCRT接口板的主要特点及技术参数   9.7.2 SCIB接口板的工作原理   9.7.3 SCIB与MCS-51单片机的接口   9.7.4 SCIB的CRT显示软件设计方法 第十章 MCS-51与D/A、A/D的接口   10.1 有关DAC及ADC的性能指标和选择要点   10.1.1 性能指标   10.1.2 选择ABC和DAC的要点   10.2 MCS-51与DAC的接口   10.2.1 MCS-51与DAC0832的接口   10.2.2 MCS-51同DAC1020及DAC1220的接口   10.2.3 MCS-51同串行输入的DAC芯片AD7543的接口   10.3 MCS-51与ADC的接口   10.3.1 MCS-51与5G14433(双积分型)的接口   10.3.2 MCS-51与ICL7135(双积分型)的接口   10.3.3 MCS-51与ICL7109(双积分型)的接口   10.3.4 MCS-51与ADC0809(逐次逼近型)的接口   10.3.5 8031AD574(逐次逼近型)的接口   10.4 V/F转换器接口技术   10.4.1 V/F转换器实现A/D转换的方法   10.4.2 常用V/F转换器LMX31简介   10.4.3 V/F转换器与MCS-51单片机接口   10.4.4 LM331应用举例 第十一章 标准串行接口及应用   11.1 概述   11.2 串行通讯的接口标准   11.2.1 RS-232C接口   11.2.2 RS-422A接口   11.2.3 RS-485接口   11.2.4 各种串行接口性能比较   11.3 双机串行通讯技术   11.3.1 单片机双机通讯技术   11.3.2 PC机与8031单片机双机通讯技术   11.4 多机串行通讯技术   11.4.1 单片机多机通讯技术   11.4.2 IBM-PC机与单片机多机通讯技术   11.5 串行通讯中的波特率设置技术   11.5.1 IBM-PC/XT系统中波特率的产生   11.5.2 MCS-51单片机串行通讯波特率的确定   11.5.3 波特率相对误差范围的确定方法   11.5.4 SMOD位对波特率的影响 第十二章 MCS-51的功率接口   12.1 常用功率器件   12.1.1 晶闸管   12.1.2 固态继电器   12.1.3 功率晶体管   12.1.4 功率场效应晶体管   12.2 开关型功率接口   12.2.1 光电耦合器驱动接口   12.2.2 继电器型驱动接口   12.2.3 晶闸管及脉冲变压器驱动接口 第十三章 MCS-51单片机与日历的接口设计   13.1 概述   13.2 MCS-51单片机与实时日历时钟芯片MSM5832的接口设计   13.2.1 MSM5832性能及引脚说明   13.2.2 MSM5832时序分析   13.2.3 8031单片机与MSM5832的接口设计   13.3 MCS-51单片机与实时日历时钟芯片MC146818的接口设计   13.3.1 MC146818性能及引脚说明   13.3.2 MC146818芯片地址分配及各单元的编程   13.3.3 MC146818的中断   13.3.4 8031单片机与MC146818的接口电路设计   13.3.5 8031单片机与MC146818的接口软件设计 第十四章 MCS-51程序设计及实用子程序   14.1 查表程序设计   14.2 散转程序设计   14.2.1 使用转移指令表的散转程序   14.2.2 使用地地址偏移量表的散转程序   14.2.3 使用转向地址表的散转程序   14.2.4 利用RET指令实现的散转程序   14.3 循环程序设计   14.3.1 单循环   14.3.2 多重循环   14.4 定点数运算程序设计   14.4.1 定点数的表示方法   14.4.2 定点数加减运算   14.4.3 定点数乘法运算   14.4.4 定点数除法   14.5 浮点数运算程序设计   14.5.1 浮点数的表示   14.5.2 浮点数的加减法运算   14.5.3 浮点数乘除法运算   14.5.4 定点数与浮点数的转换   14.6 码制转换   ……    

    标签: MCS 51 单片机 应用设计

    上传时间: 2013-11-06

    上传用户:xuanjie

  • 小信号放大电路设计

    摘 要: 在纺织纱线的张力测试中,为了对小张力进行有效的测试, 利用电阻应变传感器作为信号转换器件, 通 过对其输出信号进行分析, 设计出相应的小信号放大滤波电路。设计应用了高精度斩波稳零运算放大器芯片 TLC2652作为小信号放大电路的核心器件,实验证明其放大效果理想,并给出了相应的实验数据。

    标签: 小信号 放大 电路设计

    上传时间: 2014-12-26

    上传用户:zhangjinzj

  • LTC4310绝缘双向I2C总线通信方案

    Linear 公司的LTC4310是绝缘的双向I2C总线通信器件,每个器件可把I2C逻辑状态编码成信号,通过绝缘层传输到另一个器件.接收器件解码,并驱动I2C总线到适当的确逻辑状态.主要用在绝缘的I2C, SMBus和PMBus 接口,绝缘电源,以太网供电和正到负电源通信.本文介绍了LTC4310主要特性,典型应用以及多种应用电路框图.    

    标签: 4310 LTC I2C 绝缘

    上传时间: 2013-11-02

    上传用户:trepb001

  • ADS1110与AT89C51单片机系统的接口电路设计

    针对51单片机系统中常用的A/D转换器价格高、精度低的缺点,介绍TI公司的16 位的带有I2C串行接口的A/D转换器ADS1110的工作原理,给出ADS1110与AT89C51单片机系统的接口电路和软件设计。实践证明,ADS1110具有高性价比和实用性。 Abstract:  According to the disadvantages of high expense and low accuracy of the general A/D converter used in MCS51 microchip system,the principle and working process of a high accuracy 16-bit A/D conversion ADS1110 which has I2C bus and belongs to TI Company are proposed here as well as the interface of ADS1110 to AT89C51 and software list.It is proved to be high performance index and practicability.

    标签: 1110 ADS 89C C51

    上传时间: 2013-11-21

    上传用户:gyq