本书从应用的角度,详细地介绍了MCS-51单片机的硬件结构、指令系统、各种硬件接口设计、各种常用的数据运算和处理程序及接口驱动程序的设计以及MCS-51单片机应用系统的设计,并对MCS-51单片机应用系统设计中的抗干扰技术以及各种新器件也作了详细的介绍。本书突出了选取内容的实用性、典型性。书中的应用实例,大多来自科研工作及教学实践,且经过检验,内容丰富、翔实。 本书可作为工科院校的本科生、研究生、专科生学习MCS-51单片机课程的教材,也可供从事自动控制、智能仪器仪表、测试、机电一体化以及各类从事MCS-51单片机应用的工程技术人员参考。 第一章 单片微型计等机概述 1.1 单片机的历史及发展概况 1.2 单片机的发展趋势 1.3 单片机的应用 1.3.1 单片机的特点 1.3.2 单片机的应用范围 1.4 8位单片机的主要生产厂家和机型 1.5 MCS-51系列单片机 第二章 MCS-51单片机的硬件结构 2.1 MCS-51单片机的硬件结构 2.2 MCS-51的引脚 2.2.1 电源及时钟引脚 2.2.2 控制引脚 2.2.3 I/O口引脚 2.3 MCS-51单片机的中央处理器(CPU) 2.3.1 运算部件 2.3.2 控制部件 2.4 MCS-51存储器的结构 2.4.1 程序存储器 2.4.2 内部数据存储器 2.4.3 特殊功能寄存器(SFR) 2.4.4 位地址空间 2.4.5 外部数据存储器 2.5 I/O端口 2.5.1 I/O口的内部结构 2.5.2 I/O口的读操作 2.5.3 I/O口的写操作及负载能力 2.6 复位电路 2.6.1 复位时各寄存器的状态 2.6.2 复位电路 2.7 时钟电路 2.7.1 内部时钟方式 2.7.2 外部时钟方式 2.7.3 时钟信号的输出 第三章 MCS-51的指令系统 3.1 MCS-51指令系统的寻址方式 3.1.1 寄存器寻址 3.1.2 直接寻址 3.1.3 寄存器间接寻址 3.1.4 立即寻址 3.1.5 基址寄存器加变址寄存器间址寻址 3.2 MCS-51指令系统及一般说明 3.2.1 数据传送类指令 3.2.2 算术操作类指令 3.2.3 逻辑运算指令 3.2.4 控制转移类指令 3.2.5 位操作类指令 第四章 MCS-51的定时器/计数器 4.1 定时器/计数器的结构 4.1.1 工作方式控制寄存器TMOD 4.1.2 定时器/计数器控制寄存器TCON 4.2 定时器/计数器的四种工作方式 4.2.1 方式0 4.2.2 方式1 4.2.3 方式2 4.2.4 方式3 4.3 定时器/计数器对输入信号的要求 4.4 定时器/计数器编程和应用 4.4.1 方式o应用(1ms定时) 4.4.2 方式1应用 4.4.3 方式2计数方式 4.4.4 方式3的应用 4.4.5 定时器溢出同步问题 4.4.6 运行中读定时器/计数器 4.4.7 门控制位GATE的功能和使用方法(以T1为例) 第五章 MCS-51的串行口 5.1 串行口的结构 5.1.1 串行口控制寄存器SCON 5.1.2 特殊功能寄存器PCON 5.2 串行口的工作方式 5.2.1 方式0 5.2.2 方式1 5.2.3 方式2 5.2.4 方式3 5.3 多机通讯 5.4 波特率的制定方法 5.4.1 波特率的定义 5.4.2 定时器T1产生波特率的计算 5.5 串行口的编程和应用 5.5.1 串行口方式1应用编程(双机通讯) 5.5.2 串行口方式2应用编程 5.5.3 串行口方式3应用编程(双机通讯) 第六章 MCS-51的中断系统 6.1 中断请求源 6.2 中断控制 6.2.1 中断屏蔽 6.2.2 中断优先级优 6.3 中断的响应过程 6.4 外部中断的响应时间 6.5 外部中断的方式选择 6.5.1 电平触发方式 6.5.2 边沿触发方式 6.6 多外部中断源系统设计 6.6.1 定时器作为外部中断源的使用方法 6.6.2 中断和查询结合的方法 6.6.3 用优先权编码器扩展外部中断源 第七章 MCS-51单片机扩展存储器的设计 7.1 概述 7.1.1 只读存储器 7.1.2 可读写存储器 7.1.3 不挥发性读写存储器 7.1.4 特殊存储器 7.2 存储器扩展的基本方法 7.2.1 MCS-51单片机对存储器的控制 7.2.2 外扩存储器时应注意的问题 7.3 程序存储器EPROM的扩展 7.3.1 程序存储器的操作时序 7.3.2 常用的EPROM芯片 7.3.3 外部地址锁存器和地址译码器 7.3.4 典型EPROM扩展电路 7.4 静态数据存储的器扩展 7.4.1 外扩数据存储器的操作时序 7.4.2 常用的SRAM芯片 7.4.3 64K字节以内SRAM的扩展 7.4.4 超过64K字节SRAM扩展 7.5 不挥发性读写存储器扩展 7.5.1 EPROM扩展 7.5.2 SRAM掉电保护电路 7.6 特殊存储器扩展 7.6.1 双口RAMIDT7132的扩展 7.6.2 快擦写存储器的扩展 7.6.3 先进先出双端口RAM的扩展 第八章 MCS-51扩展I/O接口的设计 8.1 扩展概述 8.2 MCS-51单片机与可编程并行I/O芯片8255A的接口 8.2.1 8255A芯片介绍 8.2.2 8031单片机同8255A的接口 8.2.3 接口应用举例 8.3 MCS-51与可编程RAM/IO芯片8155H的接口 8.3.1 8155H芯片介绍 8.3.2 8031单片机与8155H的接口及应用 8.4 用MCS-51的串行口扩展并行口 8.4.1 扩展并行输入口 8.4.2 扩展并行输出口 8.5 用74LSTTL电路扩展并行I/O口 8.5.1 用74LS377扩展一个8位并行输出口 8.5.2 用74LS373扩展一个8位并行输入口 8.5.3 MCS-51单片机与总线驱动器的接口 8.6 MCS-51与8253的接口 8.6.1 逻辑结构与操作编址 8.6.2 8253工作方式和控制字定义 8.6.3 8253的工作方式与操作时序 8.6.4 8253的接口和编程实例 第九章 MCS-51与键盘、打印机的接口 9.1 LED显示器接口原理 9.1.1 LED显示器结构 9.1.2 显示器工作原理 9.2 键盘接口原理 9.2.1 键盘工作原理 9.2.2 单片机对非编码键盘的控制方式 9.3 键盘/显示器接口实例 9.3.1 利用8155H芯片实现键盘/显示器接口 9.3.2 利用8031的串行口实现键盘/显示器接口 9.3.3 利用专用键盘/显示器接口芯片8279实现键盘/显示器接口 9.4 MCS-51与液晶显示器(LCD)的接口 9.4.1 LCD的基本结构及工作原理 9.4.2 点阵式液晶显示控制器HD61830介绍 9.5 MCS-51与微型打印机的接口 9.5.1 MCS-51与TPμp-40A/16A微型打印机的接口 9.5.2 MCS-51与GP16微型打印机的接口 9.5.3 MCS-51与PP40绘图打印机的接口 9.6 MCS-51单片机与BCD码拨盘的接口设计 9.6.1 BCD码拨盘 9.6.2 BCD码拨盘与单片机的接口 9.6.3 拨盘输出程序 9.7 MCS-51单片机与CRT的接口 9.7.1 SCIBCRT接口板的主要特点及技术参数 9.7.2 SCIB接口板的工作原理 9.7.3 SCIB与MCS-51单片机的接口 9.7.4 SCIB的CRT显示软件设计方法 第十章 MCS-51与D/A、A/D的接口 10.1 有关DAC及ADC的性能指标和选择要点 10.1.1 性能指标 10.1.2 选择ABC和DAC的要点 10.2 MCS-51与DAC的接口 10.2.1 MCS-51与DAC0832的接口 10.2.2 MCS-51同DAC1020及DAC1220的接口 10.2.3 MCS-51同串行输入的DAC芯片AD7543的接口 10.3 MCS-51与ADC的接口 10.3.1 MCS-51与5G14433(双积分型)的接口 10.3.2 MCS-51与ICL7135(双积分型)的接口 10.3.3 MCS-51与ICL7109(双积分型)的接口 10.3.4 MCS-51与ADC0809(逐次逼近型)的接口 10.3.5 8031AD574(逐次逼近型)的接口 10.4 V/F转换器接口技术 10.4.1 V/F转换器实现A/D转换的方法 10.4.2 常用V/F转换器LMX31简介 10.4.3 V/F转换器与MCS-51单片机接口 10.4.4 LM331应用举例 第十一章 标准串行接口及应用 11.1 概述 11.2 串行通讯的接口标准 11.2.1 RS-232C接口 11.2.2 RS-422A接口 11.2.3 RS-485接口 11.2.4 各种串行接口性能比较 11.3 双机串行通讯技术 11.3.1 单片机双机通讯技术 11.3.2 PC机与8031单片机双机通讯技术 11.4 多机串行通讯技术 11.4.1 单片机多机通讯技术 11.4.2 IBM-PC机与单片机多机通讯技术 11.5 串行通讯中的波特率设置技术 11.5.1 IBM-PC/XT系统中波特率的产生 11.5.2 MCS-51单片机串行通讯波特率的确定 11.5.3 波特率相对误差范围的确定方法 11.5.4 SMOD位对波特率的影响 第十二章 MCS-51的功率接口 12.1 常用功率器件 12.1.1 晶闸管 12.1.2 固态继电器 12.1.3 功率晶体管 12.1.4 功率场效应晶体管 12.2 开关型功率接口 12.2.1 光电耦合器驱动接口 12.2.2 继电器型驱动接口 12.2.3 晶闸管及脉冲变压器驱动接口 第十三章 MCS-51单片机与日历的接口设计 13.1 概述 13.2 MCS-51单片机与实时日历时钟芯片MSM5832的接口设计 13.2.1 MSM5832性能及引脚说明 13.2.2 MSM5832时序分析 13.2.3 8031单片机与MSM5832的接口设计 13.3 MCS-51单片机与实时日历时钟芯片MC146818的接口设计 13.3.1 MC146818性能及引脚说明 13.3.2 MC146818芯片地址分配及各单元的编程 13.3.3 MC146818的中断 13.3.4 8031单片机与MC146818的接口电路设计 13.3.5 8031单片机与MC146818的接口软件设计 第十四章 MCS-51程序设计及实用子程序 14.1 查表程序设计 14.2 散转程序设计 14.2.1 使用转移指令表的散转程序 14.2.2 使用地地址偏移量表的散转程序 14.2.3 使用转向地址表的散转程序 14.2.4 利用RET指令实现的散转程序 14.3 循环程序设计 14.3.1 单循环 14.3.2 多重循环 14.4 定点数运算程序设计 14.4.1 定点数的表示方法 14.4.2 定点数加减运算 14.4.3 定点数乘法运算 14.4.4 定点数除法 14.5 浮点数运算程序设计 14.5.1 浮点数的表示 14.5.2 浮点数的加减法运算 14.5.3 浮点数乘除法运算 14.5.4 定点数与浮点数的转换 14.6 码制转换 ……
上传时间: 2013-11-06
上传用户:xuanjie
xlisp单片机驱动程序是是深圳市学林电子有限公司综合多年经验开发出的多功能8051单片机平台(兼容AVR/PIC单片机的部份烧写实验功能)。 集成常用的单片机外围硬件,ISP下载线,单片机仿真器, 单片机试验板,编程器功能于一身。配合本公司的近百个详细的汇编/c语言例子程序,可以让您在最短的时间内,全面的了解掌握单片机编程技术。特别适合于单片机初学者, 大中专院校, 单片机工程师, 实验室选用。 系统的特点: 1 全开放的模块化设计:所有硬件资源对用户开放,搭配随心所欲,不会出现硬件束缚软件的情况。既可学习软件, 更可深入的了解硬件。 2 高品质的工艺: 本机采用高档透明雅克力面板, 铝合金外箱, 全贴片机器生产, 工艺精美绝伦! 3 超强的电路资源配备:集成了基本上所有单片机应用中可能遇到的功能模块部份,你再也不必要去找其他零件,即可轻松完成您所需要的开发任务。 4 完美的例子程序: 集合本公司多年的经验,每个模块都有完整的带中文注释例子程序, 原理图, 接线方法, 很多都可以直接拿来应用。快速提高您的硬件,软件编程水平。 5 所有端口全部采用防插反设计,均配有连接照片和中文注解,即便您是初学者,也能轻松掌握。 6 配有ISP下载头。可选232/USB通信,CPU控制编程,不受电脑配置及操作系统影响,稳定性一流。 可以作为一台独立的ISP下载线使用,支持芯片包括51/AVR/PIC各系列!同时在板上可以直接对89S51/52等等芯片编程,当作独立编程器使用。 7 配有40P外接仿真头,可以作为一台独立的51单片机硬件仿真器使用,通过KEIL SOFT软件配合, 即可对外部硬件以及板上资源实现单步调试, 断点, 全速等等全部功能。 8 全中文软件操作导航, 独有智能一键通设计,擦除, 写入, 校验,运行自动完成,软件中英文自动选择, 适合港台地区用户使用。 特别设计的烧写实验仿真3IN1的公用卡座, CPU插上后即不需要插拔,烧写仿真等公用串口,使用极其方便简洁。 9 价格低廉,轻松拥有! 目前市面上同类产品价格均在2000-3000左右, 本套件是第一款600元以下的高档单片机实验仪!
上传时间: 2014-12-25
上传用户:范缜东苑
P0端口由锁存器、输入缓冲器、切换开关、一个与非门、一个与门及场效应管驱动电路构成。再看图的右边,标号 为P0.X引脚的图标,也就是说P0.X引脚可以是P0.0到P0.7的任何一位,即在P0口有8个与上图相同的电路组成。
上传时间: 2014-01-13
上传用户:fandeshun
伟福仿真器系统概述 本仿真器系统由仿真主机+仿真头、MULT1A用户板、实验板、开关电源等组成。本系统的特点是: 1.主机+仿真头的组合,通过更换不同型号的仿真头即可对各种不同类型的单片机进行仿真,是一种灵活的多CPU仿真系统。采用主机+POD组合的方式,更换POD,可以对各种CPU进行仿真。本仿真器主机型号为E2000/S,仿真头型号为POD8X5X(可仿真51系列8X5X单片机)。 2.双平台,具有DOS版本和WINDOWS版本,后者功能强大,中/英文界面任选,用户源程序的大小不再有任何限制,支持ASM,c,PLM语言混合编程,具有项目管理功能,为用户的资源共享、课题重组提供强有力的手段。支持点屏显示,用鼠标左键点一下源程序中的某一变量,即可显示该变量的数值。有丰富的窗口显示方式,多方位,动态地显示仿真的各种过程,使用极为便利。本操作系统一经推出,立即被广大用户所喜爱。 3.双工作模式①.软件模拟仿真(不要仿真器也能模拟仿真)。②硬件仿真。 4.双CPU结构,100%不占用户资源。全空间硬件断点,不受任何条件限制,支持地址、数据、外部信号、事件断点、支持实时断点计数、软件运行时间统计。 5.双集成环境编辑、编译、下载、调试全部集中在一个环境下。多种仿真器,多类CPU仿真全部集成在一个环境下。可仿真51系列,196系列,PIC系列,飞利蒲公司的552、LPC764、DALLAS320,华邦438等51增强型CPU。为了跟上形势,现在很多工程师需要面对和掌握不同的项目管理器、编辑器、编译器。他们由不同的厂家开发,相互不兼容,使用不同的界面,学习使用都很吃力。伟福WINDOWS调试软件为您提供了一个全集成环境,统一的界面,包含一个项目管理器,一个功能强大的编辑器,汇编Make、Build和调试工具并提供千个与第三方编译器的接口。由于风格统一,大大节省了您的精力和时间。 6.强大的逻辑分析仪综合调试功能。逻辑分析仪由交互式软件菜单窗口对系统硬件的逻辑或时序进行同步实时采样,并实时在线调试分析,采集深度32K(E2000/L),最高时基采样频率达20MHz,40路波形,可精确实时反映用户程序运行时的历史时间。系统在使用逻辑分析仪时,除普通的单步运行、键盘断点运行、全速硬件断点运行外,还可实现各种条件组合断点如:数据、地址、外部控制信号、CPU内部控制信号、程序区间断点等。由于逻辑仪可以直接对程序的执行结果进行分析,因此极大地便利于程序的调试。随着科学技术的发展,单片机通讯方面的运用越来越多。在通讯功能的调试时,如果通讯不正常,查找原因是非常耗时和低效的,您很难搞清楚问题到底在什么地方,是波特率不对,是硬件信道有问题,是通讯协仪有问题,是发方出错还是收方出错。有了逻辑仪,情况则完全不一样,用它可以分别或者同时对发送方、接收方的输入或者输出波形进行记录、存储、对比、测量等各种直观的分析,可以将实际输出通讯报文的波形与源程序相比较,可立即发现问题所在,从而极大地方便了调试。 7.强大的追踪器功能追踪功能以总线周期为单位,实时记录仿真过程中CPU发生的总线事件,其触发条件方式同逻辑分析仪。追踪窗口在仿真停止时可收集显示追踪的CPU指令记忆信息,可以以总线反汇编码模式、源程序模式对应显示追踪结果。屏幕窗口显示波形图最多追踪记忆指令32K并通过仿真器的断点、单步、全速运行或各种条件组合断点来完成追踪功能。总线跟踪可以跟踪程序的运行轨迹。可以统计软件运行时间。
上传时间: 2013-11-01
上传用户:xiehao13
□基于来电显示技术,识别主人,利用手机或固定电话实现免接通,免费用的绝密遥控关及撤防。□单芯片多功能可编程设计,MCU内核,有着十分灵活广泛的应用(可定制特殊功能)。自动拨号的电话报警器方面:室内手动延时布防,手机或固定电话免接通遥控撤防;拨号报警+现场报警(可选)。电话遥控开关方面:用于开启电控门锁,保险柜电控锁,车库电动门,电器开关...等。更多应用......。□单芯片最多可存入6组电话号码(6个主人)不重码,最后一组号码可刷新,掉电不丢失,可保100年。□非主人拨入无效,主人需20秒内连续拨通两次遥控才有效(撤防或开关),操纵成功后会自动回拨遥控者电话一次,以表示遥控成功。绝不影响电话的正常使用。□循环拨打1-6组主人电话号码报警15次,接听报警时警声提示,可同时选择现场报警。无注册用户时,触发报警将自动转入连续现场报警1分钟。□接警处理功能,接听报警期间,手机或固定电话按"#"键退出报警。未接警的号码继续打报警。□仅设计两按钮实现用户注册、信息删除、室那手动布防撤防、输出开关控制、报警模式设定,报警期间无法手动撤防。□两种反复可编程报警模式。掉电不丢失。模式1:报警完毕自动撤防;模式2:报警完毕保持布防。□两种自适应电路模式:DTMF解码器接入模式和DTMF解码器不接入模式。自动实现不同的电路设计实现不同的输出控制功能。同一电路设计,通过增减硬部件即可实现不同的输出功能,QL310上电时自动识别DTMF解码器是否存在。□两路警声输出:其中一路输出用于操作音提示及报警时加载到电话线路中供监听用。另一路为现场报警使用(可根据需要选用,这路只有在报警时才有输出,设计时可通过加大功率提高警声)。□状态记忆功能:布撤防状态都有记忆功能(掉电不丢失)。可避免布撤防期间的偶然的停电再上电是状态发生变化。比如,当前为布防状态,掉电再上电后还是保持布防状态。□手动布撤防提示音,布撤防LED指示灯。□上电开机报警模式提示音,模式1发一声提示音;模式2发两声提示音。□触发端的信号智能检测,因此可适应任何触发信号:或高电平,或低电平,或高/低脉冲信号;无源的开关信号,如继电器,干簧管或门磁开关等(由于触发端内部有上拉电阻)。标准的TTL电平,通过外接简单的限幅电路可实现更高电平或脉冲的输入(红外探头,防火探头等)。特强抗干扰处理,长距离布线可抗强电磁干扰。□20脚PDIP封装及20脚SOP封装。□5V低功耗。使用3.58M晶振。□工业级设计,工作温度:-40℃~+85℃
上传时间: 2013-11-13
上传用户:lacsx
C8051F单片机 C8051F系列单片机 单片机自20世纪70年代末诞生至今,经历了单片微型计算机SCM、微控制器MCU及片上系统SoC三大阶段,前两个阶段分别以MCS-51和80C51为代表。随着在嵌入式领域中对单片机的性能和功能要求越来越高,以往的单片机无论是运行速度还是系统集成度等多方面都不能满足新的设计需要,这时Silicon Labs 公司推出了C8051F系列单片机,成为SoC的典型代表。 C8051F具有上手快(全兼容8051指令集)、研发快(开发工具易用,可缩短研发周期)和见效快(调试手段灵活)的特点,其性能优势具体体现在以下方面: 基于增强的CIP-51内核,其指令集与MCS-51完全兼容,具有标准8051的组织架构,可以使用标准的803x/805x汇编器和编译器进行软件开发。CIP-51采用流水线结构,70%的的指令执行时间为1或2个系统时钟周期,是标准8051指令执行速度的12倍;其峰值执行速度可达100MIPS(C8051F120等),是目前世界上速度最快的8位单片机。 增加了中断源。标准的8051只有7个中断源Silicon Labs 公司 C8051F系列单片机扩展了中断处理这对于时实多任务系统的处理是很重要的扩展的中断系统向CIP-51提供22个中断源允许大量的模拟和数字外设中断一个中断处理需要较少的CPU干预却有更高的执行效率。 集成了丰富的模拟资源,绝大部分的C8051F系列单片机都集成了单个或两个ADC,在片内模拟开关的作用下可实现对多路模拟信号的采集转换;片内ADC的采样精度最高可达24bit,采样速率最高可达500ksps,部分型号还集成了单个或两个独立的高分辨率DAC,可满足绝大多数混合信号系统的应用并实现与模拟电子系统的无缝接口;片内温度传感器则可以迅速而精确的监测环境温度并通过程序作出相应处理,提高了系统运行的可靠性。 集成了丰富的外部设备接口。具有两路UART和最多可达5个定时器及6个PCA模块,此外还根据不同的需要集成了SMBus、SPI、USB、CAN、LIN等接口,以及RTC部件。外设接口在不使用时可以分别禁止以降低系统功耗。与其他类型的单片机实现相同的功能需要多个芯片的组合才能完成相比,C8051单片机不仅减少了系统成本,更大大降低了功耗。 增强了在信号处理方面的性能,部分型号具有16x16 MAC以及DMA功能,可对所采集信号进行实时有效的算法处理并提高了数据传送能力。 具有独立的片内时钟源(精度最高可达0.5%),设计人员既可选择外接时钟,也可直接应用片内时钟,同时可以在内外时钟源之间自如切换。片内时钟源降低了系统设计的复杂度,提高了系统可靠性,而时钟切换功能则有利于系统整体功耗的降低。 提供空闲模式及停机模式等多种电源管理方式来降低系统功耗 实现了I/O从固定方式到交叉开关配置。固定方式的I/O端口,既占用引脚多,配置又不够灵活。在C8051F中,则采用开关网络以硬件方式实现I/O端口的灵活配置,外设电路单元通过相应的配置寄存器控制的交叉开关配置到所选择的端口上。 复位方式多样化,C8051F把80C51单一的外部复位发展成多源复位,提供了上电复位、掉电复位、外部引脚复位、软件复位、时钟检测复位、比较器0复位、WDT复位和引脚配置复位。众多的复位源为保障系统的安全、操作的灵活性以及零功耗系统设计带来极大的好处。 从传统的仿真调试到基于JTAG接口的在系统调试。C8051F在8位单片机中率先配置了标准的JTAG接口(IEEE1149.1)。C8051F的JTAG接口不仅支持Flash ROM的读/写操作及非侵入式在系统调试,它的JTAG逻辑还为在系统测试提供边界扫描功能。通过边界寄存器的编程控制,可对所有器件引脚、SFR总线和I/O口弱上拉功能实现观察和控制。 C8051F系列单片机型号齐全,可根据设计需求选择不同规模和带有特定外设接口的型号,提供从多达100个引脚的高性能单片机到最小3mmX3mm的封装,满足不同设计的需要。 基于上述特点,Silicon Labs 公司C8051F系列单片机作为SoC芯片的杰出代表能够满足绝大部分场合的复杂功能要求,并在嵌入式领域的各个场合都得到了广泛的应用:在工业控制领域,其丰富的模拟资源可用于工业现场多种物理量的监测、分析及控制和显示;在便携式仪器领域,其低功耗和强大的外设接口也非常适合各种信号的采集、存储和传输;此外,新型的C8051F5xx系列单片机也在汽车电子行业中崭露头角。正是这些优势,使得C8051单片机在进入中国市场的短短几年内就迅速风靡,相信随着新型号的不断推出以及推广力度的不断加大,C8051系列单片机将迎来日益广阔的发展空间,成为嵌入式领域的时代宠儿 此系列单片机完全兼容MCS-51指令集,容易上手,开发周期短,大大节约了开发成本。C8051F系统集成度高,总线时钟可达25M
上传时间: 2013-11-24
上传用户:testAPP
单片机串行通信发射机 我所做的单片机串行通信发射机主要在实验室完成,参考有关的书籍和资料,个人完成电路的设计、焊接、检查、调试,再根据自己的硬件和通信协议用汇编语言编写发射和显示程序,然后加电调试,最终达到准确无误的发射和显示。在这过程中需要选择适当的元件,合理的电路图扎实的焊接技术,基本的故障排除和纠正能力,会使用基本的仪器对硬件进行调试,会熟练的运用汇编语言编写程序,会用相关的软件对自己的程序进行翻译,并烧进芯片中,要与对方接收机统一通信协议,要耐心的反复检查、修改和调试,直到达到预期目的。单片机串行通信发射机采用串行工作方式,发射并显示两位数字信息,既显示00-99,使数据能够在不同地方传递。硬件部分主要分两大块,由AT89C51和多个按键组成的控制模块,包括时钟电路、控制信号电路,时钟采用6MHZ晶振和30pF的电容来组成内部时钟方式,控制信号用手动开关来控制,P1口来控制,P2、P3口产生信号并通过共阳极数码管来显示,软件采用汇编语言来编写,发射程序在通信协议一致的情况下完成数据的发射,同时显示程序对发射的数据加以显示。毕业设计的目的是了解基本电路设计的流程,丰富自己的知识和理论,巩固所学的知识,提高自己的动手能力和实验能力,从而具备一定的设计能力。我做得的毕业设计注重于对单片机串行发射的理论的理解,明白发射机的工作原理,以便以后单片机领域的开发和研制打下基础,提高自己的设计能力,培养创新能力,丰富自己的知识理论,做到理论和实际结合。本课题的重要意义还在于能在进一步层次了解单片机的工作原理,内部结构和工作状态。理解单片机的接口技术,中断技术,存储方式,时钟方式和控制方式,这样才能更好的利用单片机来做有效的设计。我的毕业设计分为两个部分,硬件部分和软件部分。硬件部分介绍:单片机串行通信发射机电路的设计,单片机AT89C51的功能和其在电路的作用。介绍了AT89C51的管脚结构和每个管脚的作用及各自的连接方法。AT89C51 与MCS-51 兼容,4K字节可编程闪烁存储器,寿命:1000次可擦,数据保存10年,全静态工作:0HZ-24HZ,三级程序存储器锁定,128*8 位内部RAM,32 跟可编程I/O 线,两个16 位定时/计数器,5 个中断源,5 个可编程串行通道,低功耗的闲置和掉电模式,片内震荡和时钟电路,P0和P1 可作为串行输入口,P3口因为其管脚有特殊功能,可连接其他电路。例如P3.0RXD 作为串行输出口,其中时钟电路采用内时钟工作方式,控制信号采用手动控制。数据的传输方式分为单工、半双工、全双工和多工工作方式;串行通信有两种形式,异步和同步通信。介绍了串行串行口控制寄存器,电源管理寄存器PCON,中断允许寄存器IE,还介绍了数码显示管的工作方式、组成,共阳极和共阴极数码显示管的电路组成,有动态和静态显示两种方式,说明了不同显示方法与单片机的连接。再后来还介绍了硬件的焊接过程,及在焊接时遇到的问题和应该注意的方面。硬件焊接好后的检查电路、不装芯片上电检查及上电装芯片检查。软件部分:在了解电路设计原理后,根据原理和目的画出电路流程图,列出数码显示的断码表,计算波特率,设置串行口,在与接受机设置相同的通信协议的基础上编写显示和发射程序。编写完程序还要进行编译,这就必须会使用编译软件。介绍了编译软件的使用和使用过程中遇到的问题,及在编译后烧入芯片使用的软件PLDA,后来的加电调试,及遇到的问题,在没问题后与接受机连接,发射数据,直到对方准确接收到。在软件调试过程中将详细介绍调试遇到的问题,例如:通信协议是否相同,数码管是否与芯片连接对应,计数器是否开始计数等。
上传时间: 2013-10-19
上传用户:uuuuuuu
EZ-USB FX系列单片机USB外围设备设计与应用:PART 1 USB的基本概念第1章 USB的基本特性1.1 USB简介21.2 USB的发展历程31.2.1 USB 1.131.2.2 USB 2.041.2.3 USB与IEEE 1394的比较41.3 USB基本架构与总线架构61.4 USB的总线结构81.5 USB数据流的模式与管线的概念91.6 USB硬件规范101.6.1 USB的硬件特性111.6.2 USB接口的电气特性121.6.3USB的电源管理141.7 USB的编码方式141.8 结论161.9 问题与讨论16第2章 USB通信协议2.1 USB通信协议172.2 USB封包中的数据域类型182.2.1 数据域位的格式182.3 封包格式192.4 USB传输的类型232.4.1 控制传输242.4.2 中断传输292.4.3 批量传输292.4.4 等时传输292.5 USB数据交换格式302.6 USB描述符342.7 USB设备请求422.8 USB设备群组442.9 结论462.10 问题与讨论46第3章 设备列举3.1注册表编辑器473.2设备列举的步骤493.3设备列举步骤的实现--使用CATC分析工具513.4结论613.5问题与讨论61第4章 USB芯片与EZUSB4.1USB芯片的简介624.2USB接口芯片644.2.1Philips接口芯片644.2.2National Semiconductor接口芯片664.3内含USB单元的微处理器684.3.1Motorola694.3.2Microchip694.3.3SIEMENS704.3.4Cypress714.4USB芯片总揽介绍734.5USB芯片的选择与评估744.6问题与讨论80第5章 设备与驱动程序5.1阶层式的驱动程序815.2主机的驱动程序835.3驱动程序的选择865.4结论865.5问题与讨论87第6章 HID群组6.1HID简介886.2HID群组的传输速率886.3HID描述符906.3.1报告描述符936.3.2主要 main 项目类型966.3.3整体 global 项目卷标976.3.4区域 local 项目卷标986.3.5简易的报告描述符996.3.6Descriptor Tool 描述符工具 1006.3.7兼容测试程序1016.4HID设备的基本请求1026.5Windows通信程序1036.6问题与讨论106PART 2 硬件技术篇第7章 EZUSB FX简介7.1简介1097.2EZUSB FX硬件框图1097.3封包与PID码1117.4主机是个主控者1137.4.1从主机接收数据1137.4.2传送数据至主机1137.5USB方向1137.6帧1147.7EZUSB FX传输类型1147.7.1批量传输1147.7.2中断传输1147.7.3等时传输1157.7.4控制传输1157.8设备列举1167.9USB核心1167.10EZUSB FX单片机1177.11重新设备列举1177.12EZUSB FX端点1187.12.1EZUSB FX批量端点1187.12.2EZUSB FX控制端点01187.12.3EZUSB FX中断端点1197.12.4EZUSB FX等时端点1197.13快速传送模式1197.14中断1207.15重置与电源管理1207.16EZUSB 2100系列1207.17FX系列--从FIFO1227.18FX系列--GPIF 通用型可程序化的接口 1227.19AN2122/26各种特性的摘要1227.20修订ID1237.21引脚描述123第8章 EZUSB FX CPU8.1简介1308.28051增强模式1308.3EZUSB FX所增强的部分1318.4EZUSB FX寄存器接口1318.5EZUSB FX内部RAM1318.6I/O端口1328.7中断1328.8电源控制1338.9特殊功能寄存器 SFR 1348.10内部总线1358.11重置136第9章 EZUSB FX内存9.1简介1379.28051内存1389.3扩充的EZUSB FX内存1399.4CS#与OE#信号1409.5EZUSB FX ROM版本141第10章 EZUSB FX输入/输出端口10.1简介14310.2I/O端口14310.3EZUSB输入/输出端口寄存器14610.3.1端口配置寄存器14710.3.2I/O端口寄存器14710.4EZUSB FX输入/输出端口寄存器14910.5EZUSB FX端口配置表15110.6I2C控制器15610.78051 I2C控制器15610.8控制位15810.8.1START位15810.8.2STOP位15810.8.3LASTRD位15810.9状态位15910.9.1DONE位15910.9.2ACK位15910.9.3BERR位15910.9.4ID1, ID015910.10送出 WRITE I2C数据16010.11接收 READ I2C数据16010.12I2C激活加载器16010.13SFR寻址 FX 16210.14端口A~E的SFR控制165第11章 EZUSB FX设备列举与重新设备列举11.1简介16711.2预设的USB设备16911.3USB核心对于EP0设备请求的响应17011.4固件下载17111.5设备列举模式17211.6没有存在EEPROM17311.7存在着EEPROM, 第一个字节是0xB0 0xB4, FX系列11.8存在着EEPROM, 第一个字节是0xB2 0xB6, FX系列11.9配置字节0,FX系列17711.10重新设备列举 ReNumerationTM 17811.11多重重新设备列举 ReNumerationTM 17911.12预设描述符179第12章 EZUSB FX批量传输12.1简介18812.2批量输入传输18912.3中断传输19112.4EZUSB FX批量IN的例子19112.5批量OUT传输19212.6端点对19412.7IN端点对的状态19412.8OUT端点对的状态19512.9使用批量缓冲区内存19512.10Data Toggle控制19612.11轮询的批量传输的范例19712.12设备列举说明19912.13批量端点中断19912.14中断批量传输的范例20112.15设备列举说明20512.16自动指针器205第13章 EZUSB控制端点013.1简介20913.2控制端点EP021013.3USB请求21213.3.1取得状态 Get_Status 21413.3.2设置特性(Set_Feature)21713.3.3清除特性(Clear_Feature)21813.3.4取得描述符(Get_Descriptor)21913.3.5设置描述符(Set Descriptor)22313.3.6设置配置(Set_Configuration)22513.3.7取得配置(Get_Configuration)22513.3.8设置接口(Set_Interface)22513.3.9取得接口(Get_Interface)22613.3.10设置地址(Set_Address)22713.3.11同步帧22713.3.12固件加载228第14章 EZUSB FX等时传输14.1简介22914.2等时IN传输23014.2.1初始化设置23014.2.2IN数据传输23014.3等时OUT传输23114.3.1初始化设置23114.3.2数据传输23214.4设置等时FIFO的大小23214.5等时传输速度23414.5.1EZUSB 2100系列23414.5.2EZUSB FX系列23514.6快速传输 仅存于2100系列 23614.6.1快速写入23614.6.2快速读取23714.7快速传输的时序 仅存于2100系列 23714.7.1快速写入波形23814.7.2快速读取波形23914.8快速传输速度(仅存于2100系列)23914.9其余的等时寄存器24014.9.1除能等时寄存器24014.9.20字节计数位24114.10以无数据来响应等时IN令牌24214.11使用等时FIFO242第15章 EZUSB FX中断15.1简介24315.2USB核心中断24415.3唤醒中断24415.4USB中断信号源24515.5SUTOK与SUDAV中断24815.6SOF中断24915.7中止 suspend 中断24915.8USB重置中断24915.9批量端点中断25015.10USB自动向量25015.11USB自动向量译码25115.12I2C中断25215.13IN批量NAK中断 仅存于AN2122/26与FX系列 25315.14I2C STOP反相中断 仅存于AN2122/26与FX系列 25415.15从FIFO中断 INT4 255第16章 EZUSB FX重置16.1简介25716.2EZUSB FX打开电源重置 POR 25716.38051重置的释放25916.3.1RAM的下载26016.3.2下载EEPROM26016.3.3外部ROM26016.48051重置所产生的影响26016.5USB总线重置26116.6EZUSB脱离26216.7各种重置状态的总结263第17章 EZUSB FX电源管理17.1简介26517.2中止 suspend 26617.3回复 resume 26717.4远程唤醒 remote wakeup 269第18章 EZUSB FX系统18.1简介27118.2DMA寄存器描述27218.2.1来源. 目的. 传输长度地址寄存器27218.2.2DMA起始与状态寄存器27518.2.3DMA同步突发使能寄存器27518.2.4虚拟寄存器27818.3RD/FRD与WR/FWR DMA闪控的选择27818.4DMA闪控波形与延伸位的交互影响27918.4.1DMA外部写入27918.4.2DMA外部读取280第19章 EZUSB FX寄存器19.1简介28219.2批量数据缓冲区寄存器28319.3等时数据FIFO寄存器28419.4等时字节计数寄存器28519.5CPU寄存器28719.6I/O端口配置寄存器28819.7I/O端口A~C输入/输出寄存器28919.8230 Kbaud UART操作--AN2122/26寄存器29119.9等时控制/状态寄存器29119.10I2C寄存器29219.11中断29419.12端点0控制与状态寄存器29919.13端点1~7的控制与状态寄存器30019.14整体USB寄存器30519.15快速传输30919.16SETUP数据31119.17等时FIFO的容量大小31119.18通用I/F中断使能31219.19通用中断请求31219.20输入/输出端口寄存器D与E31319.20.1端口D输出31319.20.2输入端口D脚位31319.20.3端口D输出使能31319.20.4端口E输出31319.20.5输入端口E脚位31419.20.6端口E输出使能31419.21端口设置31419.22接口配置31419.23端口A与端口C切换配置31619.23.1端口A切换配置#231619.23.2端口C切换配置#231719.24DMA寄存器31919.24.1来源. 目的. 传输长度地址寄存器31919.24.2DMA起始与状态寄存器32019.24.3DMA同步突发使能寄存器32019.24.4选择8051 A/D总线作为外部FIFO321PART 3 固件技术篇第20章 EZUSB FX固件架构与函数库20.1固件架构总览32320.2固件架构的建立32520.3固件架构的副函数钩子32520.3.1工作分配器32620.3.2设备请求 device request 32620.3.3USB中断服务例程32920.4固件架构整体变量33220.5描述符表33320.5.1设备描述符33320.5.2配置描述符33420.5.3接口描述符33420.5.4端点描述符33520.5.5字符串描述符33520.5.6群组描述符33520.6EZUSB FX固件的函数库33620.6.1包含文件 *.H 33620.6.2子程序33620.6.3整体变量33820.7固件架构的原始程序代码338第21章 EZUSB FX固件范例程序21.1范例程序的简介34621.2外围I/O测试程序34721.3端点对, EP_PAIR范例35221.4批量测试, BulkTest范例36221.5等时传输, ISOstrm范例36821.6问题与讨论373PART 4 实验篇第22章 EZUSB FX仿真器22?1简介37522?2所需的工具37622?3EZUSB FX框图37722.4EZUSB最终版本的系统框图37822?5第一次下载程序37822.6EZUSB FX开发系统框图37922.7设置开发环境38022.8EZUSB FX开发工具组的内容38122.9EZUSB FX开发工具组软件38222.9.1初步安装程序38222.9.2确认主机 个人计算机 是否支持USB38222.10安装EZUSB控制平台. 驱动程序以及文件38322.11EZUSB FX开发电路板38522.11.1简介38522.11.2开发电路板的浏览38522.11.3所使用的8051资源38622.11.4详细电路38622.11.5LED的显示38722.11.6Jumper38722.11.7连接器39122.11.8内存映象图39222.11.9PLD信号39422.11.10PLD源文件文件39522.11.11雏形板的扩充连接器P1~P639722.11.12Philips PCF8574 I/O扩充IC40022.12DMA USB FX I/O LAB开发工具介绍40122.12.1USBFX简介40122.12.2USBFX及外围整体环境介绍40322?12?3USBFX与PC连接软件介绍40422.12.4USBFX硬件功能介绍404第23章 LED显示器输出实验23.1硬件设计与基本概念40923.2固件设计41023.3.1固件架构文件FW.C41123.3.2描述符文件DESCR.A5141223.3.3外围接口文件PERIPH.C41723.4固件程序代码的编译与链接42123.5Windows程序, VB设计42323.6INF文件的编写设计42423.7结论42623.8问题与讨论427第24章 七段显示器与键盘的输入/输出实验24.1硬件设计与基本概念42824.2固件设计43124.2.1七段显示器43124.2.24×4键盘扫描43324.3固件程序代码的编译与链接43424.4Windows程序, VB设计43624.5问题与讨论437第25章 LCD文字型液晶显示器输出实验25.1硬件设计与基本概念43825.1.1液晶显示器LCD43825.2固件设计45225.3固件程序代码的编译与链接45625.4Windows程序, VB设计45725.5问题与讨论458第26章 LED点阵输出实验26.1硬件设计与基本概念45926.2固件设计46326.3固件程序代码的编译与链接46326.4Windows程序, VB设计46526.5问题与讨论465第27章 步进电机输出实验27.1硬件设计与基本概念46627.1.11相激磁46727.1.22相激磁46727.1.31-2相激磁46827?1?4PMM8713介绍46927.2固件设计47327.3固件程序代码的编译与链接47427.4Windows程序, VB设计47627.5问题与讨论477第28章 I2C接口输入/输出实验28.1硬件设计与基本概念47828.2固件设计48128.3固件程序代码的编译与链接48328.4Windows程序, VB设计48428.5问题与讨论485第29章 A/D转换器与D/A转换器的输入/输出实验29.1硬件设计与基本概念48629.1.1A/D转换器48629.1.2D/A转换器49029.2固件设计49329.2.1A/D转换器的固件设计49329.2.2D/A转换器的固件设计49629.3固件程序代码的编译与链接49729.4Windows程序, VB设计49829.5问题与讨论499第30章 LCG绘图型液晶显示器输出实验30.1硬件设计与基本概念50030.1.1绘图型LCD50030.1.2绘图型LCD控制指令集50330.1.3绘图型LCD读取与写入时序图50530.2固件设计50630.2.1LCG驱动程序50630.2.2USB固件码51330.3固件程序代码的编译与链接51630.4Windows程序, VB设计51730.5问题与讨论518附录A Cypress控制平台的操作A.1EZUSB控制平台总览519A.2主画面520A.3热插拔新的USB设备521A.4各种工具栏的使用524A.5故障排除526A.6控制平台的进阶操作527A.7测试Unary Op工具栏上的按钮功能528A.8测试制造商请求的工具栏 2100 系列的开发电路板 529A.9测试等时传输工具栏532A.10测试批量传输工具栏533A.11测试重置管线工具栏535A.12测试设置接口工具栏537A.13测试制造商请求工具栏 FX系列开发电路板A.14执行Get Device Descriptor 操作来验证开发板的功能是否正确539A.15从EZUSB控制平台中, 加载dev_io的范例并且加以执行540A.16从Keil侦错应用程序中, 加载dev_io范例程序代码, 然后再加以执行542A.17将dev_io 目标文件移开, 且使用Keil IDE 集成开发环境 来重建545A.18在侦错器下执行dev_io目标文件, 并且使用具有侦错能力的IDE547A.19在EZUSB控制平台下, 执行ep_pair目标文件A.20如何修改fw范例, 并在开发电路板上产生等时传输550附录BEZUSB 2100系列及EZUSB FX系列引脚表B.1EZUSB 2100系列引脚表555B?2EZUSB FX系列引脚图表561附录C EZUSB FX寄存器总览附录D EEPROM烧录方式
上传时间: 2013-11-21
上传用户:努力努力再努力
MSP430系列flash型超低功耗16位单片机MSP430系列单片机在超低功耗和功能集成等方面有明显的特点。该系列单片机自问世以来,颇受用户关注。在2000年该系列单片机又出现了几个FLASH型的成员,它们除了仍然具备适合应用在自动信号采集系统、电池供电便携式装置、超长时间连续工作的设备等领域的特点外,更具有开发方便、可以现场编程等优点。这些技术特点正是应用工程师特别感兴趣的。《MSP430系列FLASH型超低功耗16位单片机》对该系列单片机的FLASH型成员的原理、结构、内部各功能模块及开发方法与工具作详细介绍。MSP430系列FLASH型超低功耗16位单片机 目录 第1章 引 论1.1 MSP430系列单片机1.2 MSP430F11x系列1.3 MSP430F11x1系列1.4 MSP430F13x系列1.5 MSP430F14x系列第2章 结构概述2.1 引 言2.2 CPU2.3 程序存储器2.4 数据存储器2.5 运行控制2.6 外围模块2.7 振荡器与时钟发生器第3章 系统复位、中断及工作模式3.1 系统复位和初始化3.1.1 引 言3.1.2 系统复位后的设备初始化3.2 中断系统结构3.3 MSP430 中断优先级3.3.1 中断操作--复位/NMI3.3.2 中断操作--振荡器失效控制3.4 中断处理 3.4.1 SFR中的中断控制位3.4.2 中断向量地址3.4.3 外部中断3.5 工作模式3.5.1 低功耗模式0、1(LPM0和LPM1)3.5.2 低功耗模式2、3(LPM2和LPM3)3.5.3 低功耗模式4(LPM4)22 3.6 低功耗应用的要点23第4章 存储空间4.1 引 言4.2 存储器中的数据4.3 片内ROM组织4.3.1 ROM 表的处理4.3.2 计算分支跳转和子程序调用4.4 RAM 和外围模块组织4.4.1 RAM4.4.2 外围模块--地址定位4.4.3 外围模块--SFR4.5 FLASH存储器4.5.1 FLASH存储器的组织4.5.2 FALSH存储器的数据结构4.5.3 FLASH存储器的控制寄存器4.5.4 FLASH存储器的安全键值与中断4.5.5 经JTAG接口访问FLASH存储器39第5章 16位CPU5.1 CPU寄存器5.1.1 程序计数器PC5.1.2 系统堆栈指针SP5.1.3 状态寄存器SR5.1.4 常数发生寄存器CG1和CG25.2 寻址模式5.2.1 寄存器模式5.2.2 变址模式5.2.3 符号模式5.2.4 绝对模式5.2.5 间接模式5.2.6 间接增量模式5.2.7 立即模式5.2.8 指令的时钟周期与长度5.3 指令组概述5.3.1 双操作数指令5.3.2 单操作数指令5.3.3 条件跳转5.3.4 模拟指令的简短格式5.3.5 其他指令第6章 硬件乘法器6.1 硬件乘法器6.2 硬件乘法器操作6.2.1 无符号数相乘(16位×16位、16位×8位、8位×16位、8位×8位)6.2.2 有符号数相乘(16位×16位、16位×8位、8位×16位、8位×8位)6.2.3 无符号数乘加(16位×16位、16位×8位、8位×16位、8位×8位)6.2.4 有符号数乘加(16位×16位、16位×8位、8位×16位、8位×8位)6.3 硬件乘法器寄存器6.4 硬件乘法器的软件限制6.4.1 寻址模式6.4.2 中断程序6.4.3 MACS第7章 基础时钟模块7.1 基础时钟模块7.2 LFXT1与XT27.2.1 LFXT1振荡器7.2.2 XT2振荡器7.2.3 振荡器失效检测7.2.4 XT振荡器失效时的DCO7.3 DCO振荡器7.3.1 DCO振荡器的特性7.3.2 DCO调整器7.4 时钟与运行模式7.4.1 由PUC启动7.4.2 基础时钟调整7.4.3 用于低功耗的基础时钟特性7.4.4 选择晶振产生MCLK7.4.5 时钟信号的同步7.5 基础时钟模块控制寄存器7.5.1 DCO时钟频率控制7.5.2 振荡器与时钟控制寄存器7.5.3 SFR控制位第8章 输入输出端口8.1 引 言8.2 端口P1、P28.2.1 P1、P2的控制寄存器8.2.2 P1、P2的原理8.2.3 P1、P2的中断控制功能8.3 端口P3、P4、P5和P68.3.1 端口P3、P4、P5和P6的控制寄存器8.3.2 端口P3、P4、P5和P6的端口逻辑第9章 看门狗定时器WDT9.1 看门狗定时器9.2 WDT寄存器9.3 WDT中断控制功能9.4 WDT操作第10章 16位定时器Timer_A10.1 引 言10.2 Timer_A的操作10.2.1 定时器模式控制10.2.2 时钟源选择和分频10.2.3 定时器启动10.3 定时器模式10.3.1 停止模式10.3.2 增计数模式10.3.3 连续模式10.3.4 增/减计数模式10.4 捕获/比较模块10.4.1 捕获模式10.4.2 比较模式10.5 输出单元10.5.1 输出模式10.5.2 输出控制模块10.5.3 输出举例10.6 Timer_A的寄存器10.6.1 Timer_A控制寄存器TACTL10.6.2 Timer_A寄存器TAR10.6.3 捕获/比较控制寄存器CCTLx10.6.4 Timer_A中断向量寄存器10.7 Timer_A的UART应用 第11章 16位定时器Timer_B11.1 引 言11.2 Timer_B的操作11.2.1 定时器长度11.2.2 定时器模式控制11.2.3 时钟源选择和分频11.2.4 定时器启动11.3 定时器模式11.3.1 停止模式11.3.2 增计数模式11.3.3 连续模式11.3.4 增/减计数模式11.4 捕获/比较模块11.4.1 捕获模式11.4.2 比较模式11.5 输出单元11.5.1 输出模式11.5.2 输出控制模块11.5.3 输出举例11.6 Timer_B的寄存器11.6.1 Timer_B控制寄存器TBCTL11.6.2 Timer_B寄存器TBR11.6.3 捕获/比较控制寄存器CCTLx11.6.4 Timer_B中断向量寄存器第12章 USART通信模块的UART功能12.1 异步模式12.1.1 异步帧格式12.1.2 异步通信的波特率发生器12.1.3 异步通信格式12.1.4 线路空闲多机模式12.1.5 地址位多机通信格式12.2 中断和中断允许12.2.1 USART接收允许12.2.2 USART发送允许12.2.3 USART接收中断操作12.2.4 USART发送中断操作12.3 控制和状态寄存器12.3.1 USART控制寄存器UCTL12.3.2 发送控制寄存器UTCTL12.3.3 接收控制寄存器URCTL12.3.4 波特率选择和调整控制寄存器12.3.5 USART接收数据缓存URXBUF12.3.6 USART发送数据缓存UTXBUF12.4 UART模式,低功耗模式应用特性12.4.1 由UART帧启动接收操作12.4.2 时钟频率的充分利用与UART的波特率12.4.3 多处理机模式对节约MSP430资源的支持12.5 波特率计算 第13章 USART通信模块的SPI功能13.1 USART同步操作13.1.1 SPI模式中的主模式13.1.2 SPI模式中的从模式13.2 中断与控制功能 13.2.1 USART接收/发送允许位及接收操作13.2.2 USART接收/发送允许位及发送操作13.2.3 USART接收中断操作13.2.4 USART发送中断操作13.3 控制与状态寄存器13.3.1 USART控制寄存器13.3.2 发送控制寄存器UTCTL13.3.3 接收控制寄存器URCTL13.3.4 波特率选择和调制控制寄存器13.3.5 USART接收数据缓存URXBUF13.3.6 USART发送数据缓存UTXBUF第14章 比较器Comparator_A14.1 概 述14.2 比较器A原理14.2.1 输入模拟开关14.2.2 输入多路切换14.2.3 比较器14.2.4 输出滤波器14.2.5 参考电平发生器14.2.6 比较器A中断电路14.3 比较器A控制寄存器14.3.1 控制寄存器CACTL114.3.2 控制寄存器CACTL214.3.3 端口禁止寄存器CAPD14.4 比较器A应用14.4.1 模拟信号在数字端口的输入14.4.2 比较器A测量电阻元件14.4.3 两个独立电阻元件的测量系统14.4.4 比较器A检测电流或电压14.4.5 比较器A测量电流或电压14.4.6 测量比较器A的偏压14.4.7 比较器A的偏压补偿14.4.8 增加比较器A的回差第15章 模数转换器ADC1215.1 概 述15.2 ADC12的工作原理及操作15.2.1 ADC内核15.2.2 参考电平15.3 模拟输入与多路切换15.3.1 模拟多路切换15.3.2 输入信号15.3.3 热敏二极管的使用15.4 转换存储15.5 转换模式15.5.1 单通道单次转换模式15.5.2 序列通道单次转换模式15.5.3 单通道重复转换模式15.5.4 序列通道重复转换模式15.5.5 转换模式之间的切换15.5.6 低功耗15.6 转换时钟与转换速度15.7 采 样15.7.1 采样操作15.7.2 采样信号输入选择15.7.3 采样模式15.7.4 MSC位的使用15.7.5 采样时序15.8 ADC12控制寄存器15.8.1 控制寄存器ADC12CTL0和ADC12CTL115.8.2 转换存储寄存器ADC12MEMx15.8.3 控制寄存器ADC12MCTLx15.8.4 中断标志寄存器ADC12IFG.x和中断允许寄存器ADC12IEN.x15.8.5 中断向量寄存器ADC12IV15.9 ADC12接地与降噪第16章 FLASH型芯片的开发16.1 开发系统概述16.1.1 开发技术16.1.2 MSP430系列的开发16.1.3 MSP430F系列的开发16.2 FLASH型的FET开发方法16.2.1 MSP430芯片的JTAG接口16.2.2 FLASH型仿真工具16.3 FLASH型的BOOT ROM16.3.1 标准复位过程和进入BSL过程16.3.2 BSL的UART协议16.3.3 数据格式16.3.4 退出BSL16.3.5 保护口令16.3.6 BSL的内部设置和资源附录A 寻址空间附录B 指令说明B.1 指令汇总B.2 指令格式B.3 不增加ROM开销的模拟指令B.4 指令说明(字母顺序)B.5 用几条指令模拟的宏指令附录C MSP430系列单片机参数表附录D MSP430系列单片机封装形式附录E MSP430系列器件命名
上传时间: 2014-04-28
上传用户:sssnaxie
电梯的开关门过程是一个变速运动过程 ,需要对电梯门系统的驱动电机进行调速控制;本文提出了一种以高性能单片微机87C196MC 为核心的电梯门机变频调速控制系统,功率驱动电路采用驱动MOSFET 的专用集成电路IR2130;分析了基于PWM 技术控制电梯门机运行的方法;采用单片微机和功率驱动专用集成电路将门系统电机的交流变频器和驱动控制器集为一体,得到了一种可靠性高、控制灵活、成本低、体积小的电梯门机控制器。关键字:变频器;正弦脉宽调制;电梯门机系统 电梯的门机系统是电梯的一个非常重要的子系统。门机系统性能的优劣直接关系着整个电梯系统能否正常地运行。所以说,对门机系统的设计开发及制造是电梯系统设计开发及制造的一个关键环节。从控制这个角度来说,研究的重点应侧重于如何把先进的变频调速技术应用到门机系统中,使门机系统能高效经济可靠地运行。在目前的工程实践中,交流电机的变频调速策略主要有两种方法,即正弦脉宽调制方法(SPWM)和空间矢量脉宽调制方法(SVPWM)。其中SPWM 的基本原理就是用正弦波和高频三角载波比较产生PWM 脉冲序列:当基波(正弦波)高于三角载波时,相应的开关器件导通,反之,当基波低于三角载波时,相应的开关器件截止。产生的PWM 脉冲序列作为逆变器功率开关器件的驱动控制信号。本电梯门机变频调速系统就是采用SPWM 调制方法,采用INTEL 公司的16 位高性能微控制器87C196MC 作为核心控制芯片,由87C196MC 的PWM 波形发生模块产生PWM 信号去驱动功率电路,从而带动门机按照预先设定的运行曲线运行。
上传时间: 2013-10-16
上传用户:zhaoman32