Keil C51单片机/arm开发工具 V8.02 :使用方法:双击c51v802.exe直接安装直到结束,安装路径最好选用默认的c:\keil 不含注册码,有2k代码的大小限制。单片机开发必备软件。
上传时间: 2013-11-04
上传用户:summery
本文介绍了uC/GUI 的组织结构,PROTEUS 仿真环境,以及在PROTEUS 仿真环境下实现uC/GUI 移植到MCS51 系列单片机P89C51RD2 的过程;并且对移植过程中涉及到的修正C51调用树和代码优化等问题进行了简明阐述。uC/GUI 是Micrium 公司针对图形LCD 开发的微型图形用户界面函数包。微型是UC/GUI最大的特点,它经过定制后可以运行在8 位的单片机上。uC/GUI 的使用,可以显著减少LCD图形用户界面设计的复杂程度。本文详细介绍了一种基于PROTEUS 仿真环境实现uC/GUI 在MCS51 系列单片机上移植的方法。
上传时间: 2013-11-20
上传用户:wxnumen
为了解决一些远程单片机设备不方便升级内部程序的困难,本文提出了利用单片机系统中现有的数据获取方式来升级单片机内部程序的方法。本文利用凌阳16 位单片机可以自读写片内程序空间的特性,通过在片内驻留BootLoader 程序的方式实现了凌阳16 位单片机片内程序的在需要时的远程升级。单片机获取数据的方式可以有很多,本文选取通过串口获取数据进行程序升级为例,并选取常见的凌阳单片机SPCE061A 为例介绍了此方法的设计思路以及实现过程。单片机的应用非常广泛,在某些情况下,单片机内部程序的升级在所难免,但是往往需要对单片机产品进行收回才能实现,这样在一些远程设备的程序升级问题上就显得非常不方便。但是有些远程设备本身留有远程通讯的方式:例如某些远程数据传输模块,为了把数据上报总会留有通讯的接口,比如422、485 甚至GPRS 或者局域网接口;又或者某些车载定位设备,为了和监控中心通讯会留有GSM、CDMA 或者GPRS 等通讯方式。在这种情况下就可以利用其现有的通讯方式对其内部单片机程序进行升级而不需要收回产品。本文的主要内容就是来研究这种远程升级单片机程序的方法。由于近年来凌阳科技的单片机,尤其是 16 位单片机,得到了越来越多的推广,其应用领域越来越广泛。本文选取一种常见的凌阳科技的16 位单片机SPCE061A 为例,来介绍单片机程序远程升级的方法。SPCE061A 里内嵌了32K 字的闪存(FLASH),即可以作为程序存储空间又可以存储数据,并且有自读写任意闪存地址的能力,本文利用这一功能,提出了通过在单片机中驻留BootLoader 程序的方法,来实现单片机程序的远程升级。远程升级的实现,需要单片机自身的响应同时还需要远程服务器提供升级所需的代码。下文将通过这两个方面来分别介绍。
上传时间: 2013-10-31
上传用户:yxgi5
计算机的指令系统是表征计算机性能的重要指标,每种计算机都有自己的指令系统。MCS—51单片机的指令系统是一个具有255种代码的集合,绝大多数指令包含两个基本部分:操作码和操作数。操作码表明指令要执行的操作的性质;操作数说明参与操作的数据或数据所存放的地址。MCS—51指令系统中所有程序指令是以机器语言形式表示,可分为单字节、双字节、三字节3种格式。用二进制编码表示的机器语言由于阅读困难,且难以记忆。因此在微机控制系统中采用汇编语言指令来编写程序。本章介绍MCS—51指令系统就是以汇编语言来描述的。 一条汇编语言指令中最多包含4个区段,如下所示: 标号: 操作码目的操作数,源源操作数;注释 标号与操作码之间“:”隔开; 操作码与操作数之间用“空格”隔开; 目的操作数和源源操作数之间有“,”分隔; 操作数与注释之间用“;”隔开。 标号是由用户定义的符号组成,必须用英文大写字母开始。标号可有可无,若一条指令中有标号,标号代表该指令所存放的第一个字节存储单元的地址,故标号又称为符号地址,在汇编时,把该地址赋值给标号。 操作码是指令的功能部分,不能缺省。MCS—51指令系统中共有42种助记符,代表了33种不同的功能。例如MOV是数据传送的助记符。 操作数是指令要操作的数据信息。根据指令的不同功能,操作数的个数有3、2、1或没有操作数。例如MOV A,#20H,包含了两个操作数A和#20H,它们之间用“,”隔开。注释可有可无,加入注释主要为了便于阅读,程序设计者对指令或程序段作简要的功能说明,在阅读程序或调试程序时将会带来很多方便。
上传时间: 2013-11-04
上传用户:kr770906
AVR单片机GCC程序设计:第一章 概述1.1 AVR 单片机GCC 开发概述1.2 一个简单的例子1.3 用MAKEFILE 管理项目1.4 开发环境的配置1.5 实验板CA-M8第二章 存储器操作编程2.1 AVR 单片机存储器组织结构2.2 I/O 寄存器操作2.3 SRAM 内变量的使用2.4 在程序中访问FLASH 程序存储器2.5 EEPROM 数据存储器操作2.6 avr-gcc 段结构与再定位2.7 外部RAM 存储器操作2.8 堆应用第三章 GCC C 编译器的使用3.1 编译基础3.2 生成静态连接库第四章 AVR 功能模块应用实验4.1 中断服务程序4.2 定时器/计数器应用4.3 看门狗应用4.4 UART 应用4.5 PWM 功能编程4.6 模拟比较器4.7 A/D 转换模块编程4.8 数码管显示程序设计4.9 键盘程序设计4.10 蜂鸣器控制第五章 使用C 语言标准I/O 流调试程序5.1 avr-libc 标准I/O 流描述5.2 利用标准I/0 流调试程序5.3 最小化的格式化的打印函数第六章 CA-M8 上实现AT89S52 编程器的实现6.1 编程原理6.2 LuckyProg2004 概述6.3 AT989S52 isp 功能简介6.4 下位机程序设计第七章 硬件TWI 端口编程7.1 TWI 模块概述7.2 主控模式操作实时时钟DS13077.3 两个Mega8 间的TWI 通信第八章 BootLoader 功能应用8.1 BootLoader 功能介绍8.2 avr-libc 对BootLoader 的支持8.3 BootLoader 应用实例8.4 基于LuckyProg2004 的BootLoader 程序第九章 汇编语言支持9.1 C 代码中内联汇编程序9.2 独立的汇编语言支持9.3 C 与汇编混合编程第十章 C++语言支持附录 1 avr-gcc 选项附录 2 Intel HEX 文件格式描述
上传时间: 2014-04-03
上传用户:ligi201200
本章将介绍μ’nSP™系列单片机的应用领域,具体讲述SPCE061A单片机在通讯、语音领域里的应用,并详细给出了有关系统的电路原理图、程序流程图以及程序代码,供读者参考。 μ’nSP™家族产品具有电源电压范围和工作速率范围较宽、集成度高、性能价格比高以及功耗低等特点,故其有非常广泛的应用领域。μ’nSP™家族系列产品,涵盖了非常广泛的应用。包括:发音与语音识别的微控制器(SPCE系列)、通信来电辩识应用的微控制器(SPT660x系列)、以及通用型微控制器等等,主要体现在以下几个方面: 用于数字信号处理 用于开发研制便携式移动终端 用于开发嵌入式计算机应用系统 用于数字信号处理1. 数字滤波器 (Digital Filter)数字滤波器是一种计算处理或算法。借助于此,可以将输入的一种数字信号或序列变换为另一种序列输出。数字滤波器已被广泛地应用于数字语音、数字图像处理以及模式识别和频谱分析。数字信号处理器(DSP,Digital Signal Processor)的作用是通过一系列数字来表示信号及其信息,并借助数字计算方法变换和处理这些信号。为了构成DSP,必须有一种部件能够快速地完成两个数值的乘法运算并将乘积累加于寄存器。“快速”意味着乘和累加(MAC,Multiply & ACcumulate)较高的运算速度。若以16位数值进行乘和累加,其结果应为32位。显然,μ’nSP™的硬件结构与其指令系统的结合足以构成DSP应用的硬件MAC单元,因而很适用于一些DSP方面的应用。
上传时间: 2014-01-26
上传用户:qb1993225
单片机汇编语言程序库内容有运算子程序,通讯子程序,扩展接口程序,中断服务子程序,代码转换,逻辑操作,数据结构,其他。
上传时间: 2013-10-09
上传用户:libinxny
在单片机应用开发中,代码的使用效率问题、单片机抗干扰性和可靠性等问题仍困扰着 工程师。为帮助工程师解决单片机设计上的难题,《电子工程专辑》网站特邀Holtek香 港分公司工程部处长邓宏杰先生担任《单片机应用编程技巧》专题讨论的嘉宾,与广大 设计工程师交流单片机设计开发经验。现根据论坛中的讨论归纳出单片机开发中应掌握 的几个基本技巧。一、 如何提高C语言编程代码的效率邓宏杰指出,用C语言进行单片机程序设计是单片机开发与应用的必然趋势。他强调:“ 如果使用C编程时,要达到最高的效率,最好熟悉所使用的C编译器。先试验一下每条C语言编译以后对应的汇编语言的语句行数,这样就可以很明确的知道效率。在今后编程的 时候,使用编译效率最高的语句。” 他指出,各家的C编译器都会有一定的差异,故编译效率也会有所不同,优秀的嵌入式系统C编译器代码长度和执行时间仅比以汇编语言编写的同样功能程度长5-20%。他说:“对于复杂而开发时间紧的项目时,可以采用C语言,但前提是要求你对该MCU系统的C语言和C编译器非常熟悉,特别要注意该C编译系统所能支持的数据类型和算法。虽然C语言是最普遍的一种高级语言,但由于不同的MCU厂家其C语言编译系统是有所差别的,特别是在一些特殊功能模块的操作上。所以如果对这些特性不了解,那么调试起来问题就会很 多,反而导致执行效率低于汇编语言。” 二、 如何减少程序中的bug? 对于如何减少程序的bug,邓宏杰给出了一些建议,他指出系统运行中应考虑的超范围管理参数有: 1.物理参数。这些参数主要是系统的输入参数,它包括激励参数、采集处理中的运行参 数和处理结束的结果参数。合理设定这些边界,将超出边界的参数都视为非正常激励或 非正常回应进行出错处理。 2.资源参数。这些参数主要是系统中的电路、器件、功能单元的资源,如记忆体容量、 存储单元长度、堆叠深度。在程式设计中,对资源参数不允许超范围使用。 3.应用参数。这些应用参数常表现为一些单片机、功能单元的应用条件。如E2PROM的擦 写次数与资料存储时间等应用参数界限。 4.过程参数。指系统运行中的有序变化的参数。
上传时间: 2013-10-21
上传用户:chukeey
单片机综合应用技术 1.1 单片机技术的发展与单片机应用的广泛选择 1.2 带A/D转换的8位微控制器PIC12C67X?? 1.3 SPI串行总线在8031单片机应用系统中的实现?? 1.4 单总线技术在测控系统中的应用?? 1.5 多任务机制在单片机系统中的应用?? 1.6 软件实现的8031单片微机中断多优先级研究?? 1.7 单片机汇编语言程序设计的变量取值表技术?? 1.8 单片机的代码优化方法?? 1.9 由微机复位引出的问题?? 1.10 一种快速CRC差错校验技术?? 1.11 基于单片机的Chebyshev神经网络硬件设计?? 1.12 二维条形码(PDF417)及其应用?? 1.13 EDA技术的应用?? 1.14 CPLD/FPGA在电子设计中的应用前景?? 1.15 现场可编程模拟ASIC与电子系统设计?? 1.16 用单片PLD器件ispLSI1016实现数显频率计
标签: 单片机
上传时间: 2014-05-05
上传用户:daxigua
AVR高速嵌入式单片机原理与应用(修订版)详细介绍ATMEL公司开发的AVR高速嵌入式单片机的结构;讲述AVR单片机的开发工具和集成开发环境(IDE),包括Studio调试工具、AVR单片机汇编器和单片机串行下载编程;学习指令系统时,每条指令均有实例,边学习边调试,使学习者看得见指令流向及操作结果,真正理解每条指令的功能及使用注意事项;介绍AVR系列多种单片机功能特点、实用程序设计及应用实例;作为提高篇,讲述简单易学、适用AVR单片机的高级语言BASCOMAVR及ICC AVR C编译器。 AVR高速嵌入式单片机原理与应用(修订版) 目录 第一章ATMEL单片机简介1.1ATMEL公司产品的特点11.2AT90系列单片机简介21.3AT91M系列单片机简介2第二章AVR单片机系统结构2.1AVR单片机总体结构42.2AVR单片机中央处理器CPU62.2.1结构概述72.2.2通用寄存器堆92.2.3X、Y、Z寄存器92.2.4ALU运算逻辑单元92.3AVR单片机存储器组织102.3.1可下载的Flash程序存储器102.3.2内部和外部的SRAM数据存储器102.3.3EEPROM数据存储器112.3.4存储器访问和指令执行时序112.3.5I/O存储器132.4AVR单片机系统复位162.4.1复位源172.4.2加电复位182.4.3外部复位192.4.4看门狗复位192.5AVR单片机中断系统202.5.1中断处理202.5.2外部中断232.5.3中断应答时间232.5.4MCU控制寄存器 MCUCR232.6AVR单片机的省电方式242.6.1休眠状态242.6.2空闲模式242.6.3掉电模式252.7AVR单片机定时器/计数器252.7.1定时器/计数器预定比例器252.7.28位定时器/计数器0252.7.316位定时器/计数器1272.7.4看门狗定时器332.8AVR单片机EEPROM读/写访问342.9AVR单片机串行接口352.9.1同步串行接口 SPI352.9.2通用串行接口 UART402.10AVR单片机模拟比较器452.10.1模拟比较器452.10.2模拟比较器控制和状态寄存器ACSR462.11AVR单片机I/O端口472.11.1端口A472.11.2端口 B482.11.3端口 C542.11.4端口 D552.12AVR单片机存储器编程612.12.1编程存储器锁定位612.12.2熔断位612.12.3芯片代码612.12.4编程 Flash和 EEPROM612.12.5并行编程622.12.6串行下载662.12.7可编程特性67第三章AVR单片机开发工具3.1AVR实时在线仿真器ICE200693.2JTAG ICE仿真器693.3AVR嵌入式单片机开发下载实验器SL?AVR703.4AVR集成开发环境(IDE)753.4.1AVR Assembler编译器753.4.2AVR Studio773.4.3AVR Prog783.5SL?AVR系列组态开发实验系统793.6SL?AVR*.ASM源文件说明81第四章AVR单片机指令系统4.1指令格式844.1.1汇编指令844.1.2汇编器伪指令844.1.3表达式874.2寻址方式894.3数据操作和指令类型924.3.1数据操作924.3.2指令类型924.3.3指令集名词924.4算术和逻辑指令934.4.1加法指令934.4.2减法指令974.4.3乘法指令1014.4.4取反码指令1014.4.5取补指令1024.4.6比较指令1034.4.7逻辑与指令1054.4.8逻辑或指令1074.4.9逻辑异或指令1104.5转移指令1114.5.1无条件转移指令1114.5.2条件转移指令1144.6数据传送指令1354.6.1直接数据传送指令1354.6.2间接数据传送指令1374.6.3从程序存储器直接取数据指令1444.6.4I/O口数据传送指令1454.6.5堆栈操作指令1464.7位指令和位测试指令1474.7.1带进位逻辑操作指令1474.7.2位变量传送指令1514.7.3位变量修改指令1524.7.4其它指令1614.8新增指令(新器件)1624.8.1EICALL-- 延长间接调用子程序1624.8.2EIJMP--扩展间接跳转1634.8.3ELPM--扩展装载程序存储器1644.8.4ESPM--扩展存储程序存储器1644.8.5FMUL--小数乘法1664.8.6FMULS--有符号数乘法1664.8.7FMULSU--有符号小数和无符号小数乘法1674.8.8MOVW--拷贝寄存器字1684.8.9MULS--有符号数乘法1694.8.10MULSU--有符号数与无符号数乘法1694.8.11SPM--存储程序存储器170 第五章AVR单片机AT90系列5.1AT90S12001725.1.1特点1725.1.2描述1735.1.3引脚配置1745.1.4结构纵览1755.2AT90S23131835.2.1特点1835.2.2描述1845.2.3引脚配置1855.3ATmega8/8L1855.3.1特点1865.3.2描述1875.3.3引脚配置1895.3.4开发实验工具1905.4AT90S2333/44331915.4.1特点1915.4.2描述1925.4.3引脚配置1945.5AT90S4414/85151955.5.1特点1955.5.2AT90S4414和AT90S8515的比较1965.5.3引脚配置1965.6AT90S4434/85351975.6.1特点1975.6.2描述1985.6.3AT90S4434和AT90S8535的比较1985.6.4引脚配置2005.6.5AVR RISC结构2015.6.6定时器/计数器2125.6.7看门狗定时器 2175.6.8EEPROM读/写2175.6.9串行外设接口SPI2175.6.10通用串行接口UART2175.6.11模拟比较器 2175.6.12模数转换器2185.6.13I/O端口2235.7ATmega83/1632285.7.1特点2285.7.2描述2295.7.3ATmega83与ATmega163的比较2315.7.4引脚配置2315.8ATtiny10/11/122325.8.1特点2325.8.2描述2335.8.3引脚配置2355.9ATtiny15/L2375.9.1特点2375.9.2描述2375.9.3引脚配置2395 .10ATmega128/128L2395.10.1特点2405.10.2描述2415.10.3引脚配置2435.10.4开发实验工具2455.11ATmega1612465.11.1特点2465.11.2描述2475.11.3引脚配置2475.12AVR单片机替代MCS51单片机249第六章实用程序设计6.1程序设计方法2506.1.1程序设计步骤2506.1.2程序设计技术2506.2应用程序举例2516.2.1内部寄存器和位定义文件2516.2.2访问内部 EEPROM2546.2.3数据块传送2546.2.4乘法和除法运算应用一2556.2.5乘法和除法运算应用二2556.2.616位运算2556.2.7BCD运算2556.2.8冒泡分类算法2556.2.9设置和使用模拟比较器2556.2.10半双工中断方式UART应用一2556.2.11半双工中断方式UART应用二2566.2.128位精度A/D转换器2566.2.13装载程序存储器2566.2.14安装和使用相同模拟比较器2566.2.15CRC程序存储的检查2566.2.164×4键区休眠触发方式2576.2.17多工法驱动LED和4×4键区扫描2576.2.18I2C总线2576.2.19I2C工作2586.2.20SPI软件2586.2.21验证SLAVR实验器及AT90S1200的口功能12596.2.22验证SLAVR实验器及AT90S1200的口功能22596.2.23验证SLAVR实验器及具有DIP40封装的口功能第七章AVR单片机的应用7.1通用延时子程序2607.2简单I/O口输出实验2667.2.1SLAVR721.ASM 2667.2.2SLAVR722.ASM2677.2.3SLAVR723.ASM2687.2.4SLAVR724.ASM2707.2.5SLAVR725.ASM2717.2.6SLAVR726.ASM2727.2.7SLAVR727.ASM2737.3综合程序2747.3.1LED/LCD/键盘扫描综合程序2747.3.2LED键盘扫描综合程序2757.3.3在LED上实现字符8的循环移位显示程序2757.3.4电脑放音机2777.3.5键盘扫描程序2857.3.6十进制计数显示2867.3.7廉价的A/D转换器2897.3.8高精度廉价的A/D转换器2947.3.9星星灯2977.3.10按钮猜数程序2987.3.11汉字的输入3047.4复杂实用程序3067.4.110位A/D转换3067.4.2步进电机控制程序3097.4.3测脉冲宽度3127.4.4LCD显示8字循环3187.4.5LED电脑时钟3247.4.6测频率3307.4.7测转速3327.4.8AT90S8535的A/D转换334第八章BASCOMAVR的应用8.1基于高级语言BASCOMAVR的单片机开发平台3408.2BASCOMAVR软件平台的安装与使用3418.3AVR I/O口的应用3458.3.1LED发光二极管的控制3458.3.2简易手控广告灯3468.3.3简易电脑音乐放音机3478.4LCD显示器3498.4.1标准LCD显示器的应用3498.4.2简单游戏机--按钮猜数3518.5串口通信UART3528.5.1AVR系统与PC的简易通信3538.5.2PC控制的简易广告灯3548.6单总线接口和温度计3568.7I2C总线接口和简易IC卡读写器359第九章ICC AVR C编译器的使用9.1ICC AVR的概述3659.1.1介绍ImageCraft的ICC AVR3659.1.2ICC AVR中的文件类型及其扩展名3659.1.3附注和扩充3669.2ImageCraft的ICC AVR编译器安装3679.2.1安装SETUP.EXE程序3679.2.2对安装完成的软件进行注册3679.3ICC AVR导游3689.3.1起步3689.3.2C程序的剖析3699.4ICC AVR的IDE环境3709.4.1编译一个单独的文件3709.4.2创建一个新的工程3709.4.3工程管理3719.4.4编辑窗口3719.4.5应用构筑向导3719.4.6状态窗口3719.4.7终端仿真3719.5C库函数与启动文件3729.5.1启动文件3729.5.2常用库函数3729.5.3字符类型库3739.5.4浮点运算库3749.5.5标准输入/输出库3759.5.6标准库和内存分配函数3769.5.7字符串函数3779.5.8变量参数函数3799.5.9堆栈检查函数3799.6AVR硬件访问的编程3809.6.1访问AVR的底层硬件3809.6.2位操作3809.6.3程序存储器和常量数据3819.6.4字符串3829.6.5堆栈3839.6.6在线汇编3839.6.7I/O寄存器3849.6.8绝对内存地址3849.6.9C任务3859.6.10中断操作3869.6.11访问UART3879.6.12访问EEPROM3879.6.13访问SPI3889.6.14相对转移/调用的地址范围3889.6.15C的运行结构3889.6.16汇编界面和调用规则3899.6.17函数返回非整型值3909.6.18程序和数据区的使用3909.6.19编程区域3919.6.20调试3919.7应用举例*3929.7.1读/写口3929.7.2延时函数3929.7.3读/写EEPROM3929.7.4AVR的PB口变速移位3939.7.5音符声程序3939.7.68字循环移位显示程序3949.7.7锯齿波程序3959.7.8正三角波程序3969.7.9梯形波程序396附录1AT89系列单片机简介398附录2AT94K系列现场可编程系统标准集成电路401附录3指令集综合404附录4AVR单片机选型表408参 考 文 献412
上传时间: 2013-11-08
上传用户:xcy122677