定压输入隔离稳压单输出电源模块效率高、体积小、可靠性高、耐冲击、隔离特性好,温度范围宽。国际标准引脚方式,阻燃封装(UL94-V0),自然冷却,无需外加散热片,无需外加其他元器件可直接使用,并可直接焊接于PCB板上。该系列电源模块具有良好的电磁兼容性,输出纹波及噪声非常小,适合用于供电电源稳定(波动范围小于±5%),对输出电压及纹波要求较高的场合,如A/D、D/A转换电路,信号采样电路等。
上传时间: 2013-11-15
上传用户:ginani
定压输入、6000VDC隔离非稳压单路输出电源模块效率高、体积小、可靠性高、耐冲击、隔离特性好,温度范围宽。国际标准引脚方式,阻燃封装(UL94-V0),自然冷却,无需外加散热片,无需外加其他元器件可直接使用,并可直接焊接在PCB板上。
上传时间: 2013-10-15
上传用户:u789u789u789
基于单片机的陶瓷窑多点温度检测系统:摘 要:系统以51单片机为核心,利用K型热电偶作为传感器,对陶瓷窑中多点温度进行监控,通过串行通信,可供PC机上绘制温度变化曲线图的技术人员分析问题,并设计了新颖的冷端补偿电路和通用查表法,本系统成本低,测温精度高,可靠实用.关键词:单片机;串行通信;冷端温度补偿;VB 在烧结陶瓷时,火候的控制对陶瓷的质量、色泽有直接的影响,进一步影响陶瓷成品的价格,而长期以来控制火候的工作就依靠工人师傅的经验,本文设计了一种多点温度实时监控系统,它能在Pc机上实时显示测量点的温度而且如果温度超过设定的临界值时,就发出信号报警,并且可以通过Pc机绘制同一个时刻不同点或者是不同时刻同一点的温度变化曲线.这样能有助于发现问题并解决问题,为节约成本和提高生产率、生产质量做出贡献.
上传时间: 2013-10-16
上传用户:lhuqi
MSP430系列单片机C语言程序设计与开发MSP430系列是一个具有明显技术特色的单片机品种。关于它的硬件特性及汇编语言程序设计已在《MSP430系列超低功耗16位单片机的原理与应用》及《MSP430系列 FLASH型超低功耗16位单片机》等书中作了全面介绍。《MSP430系列单片机C语言程序设计与开发》介绍IAR公司为MSP430系列单片机配备的C程序设计语言C430。书中叙述了C语言的基本概念、C430的扩展特性及C库函数;对C430的集成开发环境的使用及出错信息作了详尽的说明;并以MSP430F149为例,对各种应用问题及外围模块操作提供了典型的C程序例程,供读者在今后的C430程序设计中参考。 《MSP430系列单片机C语言程序设计与开发》可以作为高等院校计算机、自动化及电子技术类专业的教学参考书,也可作为工程技术人员设计开发时的技术资料。MSP430系列超低功耗16位单片机的原理与应用目录MSP430系列单片机C语言程序设计与开发 目录 第1章 C语言基本知识1.1 标识符与关键字11.1.1 标识符11.1.2 关键字11.2 数据基本类型21.2.1 整型数据21.2.2 实型数据31.2.3 字符型数据41.2.4 各种数据转换关系61.3 C语言的运算符71.3.1 算术运算符71.3.2 关系运算符和逻辑运算符71.3.3 赋值运算符81.3.4 逗号运算符81.3.5 ? 与 :运算符81.3.6 强制转换运算符91.3.7 各种运算符优先级列表91.4 程序设计的三种基本结构101.4.1 语句的概念101.4.2 顺序结构111.4.3 选择结构121.4.4 循环结构141.5 函数181.5.1 函数定义181.5.2 局部变量与全局变量191.5.3 形式参数与实际参数201.5.4 函数调用方式201.5.5 函数嵌套调用211.5.6 变量的存储类别221.5.7 内部函数和外部函数231.6 数组231.6.1 一维数组241.6.2 多维数组241.6.3 字符数组261.7 指针271.7.1 指针与地址的概念271.7.2 指针变量的定义281.7.3 指针变量的引用281.7.4 数组的指针281.7.5 函数的指针301.7.6 指针数组311.8 结构和联合321.8.1 结构定义321.8.2 结构类型变量的定义331.8.3 结构类型变量的初始化341.8.4 结构类型变量的引用341.8.5 联合341.9 枚举361.9.1 枚举的定义361.9.2 枚举元素的值371.9. 3 枚举变量的使用371.10 类型定义381.10.1 类型定义的形式381.10.2 类型定义的使用381.11 位运算391.11.1 位运算符391.11.2 位域401.12 预处理功能411.12.1 简单宏定义和带参数宏定义411.12.2 文件包含431.12.3 条件编译命令44第2章 C430--MSP430系列的C语言2.1 MSP430系列的C语言452.1.1 C430概述452.1.2 C430程序设计工作流程462.1.3 开始462.1.4 C430程序生成472.2 C430的数据表达482.2.1 数据类型482.2.2 编码效率502.3 C430的配置512.3.1 引言512.3. 2 存储器分配522.3.3 堆栈体积522.3.4 输入输出522.3.5 寄存器的访问542.3.6 堆体积542.3.7 初始化54第3章 C430的开发调试环境3.1 引言563.1.1 Workbench特性563.1.2 Workbench的内嵌编辑器特性563.1.3 C编译器特性573.1. 4 汇编器特性573.1.5 连接器特性583.1.6 库管理器特性583.1.7 C?SPY调试器特性593.2 Workbench概述593.2.1 项目管理模式593.2.2 选项设置603.2.3 建立项目603.2.4 测试代码613.2.5 样本应用程序613.3 Workbench的操作623.3.1 开始633.3.2 编译项目683.3.3 连接项目693.3.4 调试项目713.3.5 使用Make命令733.4 Workbench的功能汇总753.4.1 Workbench的窗口753.4.2 Workbench的菜单功能813.5 Workbench的内嵌编辑器993.5.1 内嵌编辑器操作993.5.2 编辑键说明993.6 C?SPY概述1013.6.1 C?SPY的C语言级和汇编语言级调试1013.6.2 程序的执行1023.7 C?SPY的操作1033.7.1 程序生成1033.7.2 编译与连接1033.7.3 C?SPY运行1033.7.4 C语言级调试1043.7.5 汇编级调试1113.8 C?SPY的功能汇总1133.8.1 C?SPY的窗口1133.8.2 C?SPY的菜单命令功能1203.9 C?SPY的表达式与宏1323.9.1 汇编语言表达式1323.9.2 C语言表达式1333.9.3 C?SPY宏1353.9.4 C?SPY的设置宏1373.9.5 C?SPY的系统宏137 第4章 C430程序设计实例4.1 程序设计与调试环境1434.1.1 程序设计调试集成环境1434.1.2 设备连接1444.1.3 ProF149实验系统1444.2 数值计算1454.2.1 C语言表达式1454.2.2 利用MPY实现运算1464.3 循环结构1474.4 选择结构1484.5 SFR访问1494.6 RAM访问1504.7 FLASH访问1514.8 WDT操作1534.8. 1 WDT使程序自动复位1534.8.2 程序对WATCHDOG计数溢出的控制1544.8.3 WDT的定时器功能1554.9 Timer操作1554.9.1 用Timer产生时钟信号1554.9.2 用Timer检测脉冲宽度1564.10 UART操作1574.10.1 点对点通信1574.10.2 点对多点通信1604.11 SPI操作1634.12 比较器操作1654.13 ADC12操作1674.13.1 单通道单次转换1674.13.2 序列通道多次转换1684.14 时钟模块操作1704.15 中断服务程序1714.16 省电工作模式1754.17 调用汇编语言子程序1764.17.1 程序举例1764.17.2 生成C程序调用的汇编子程序177第5章 C430的扩展特性5.1 C430的语言扩展概述1785.1.1 扩展关键字1785.1.2 #pragma编译命令1785.1.3 预定义符号1795.1.4 本征函数1795.1.5 其他扩展特性1795.2 C430的关键字扩展1795.2.1 interrupt1805.2.2 monitor1805.2.3 no_init1815.2.4 sfrb1815.2.5 sfrw1825.3 C430的 #pragma编译命令1825.3.1 bitfields=default1825.3.2 bitfields=reversed1825.3.3 codeseg1835.3.4 function=default1835.3.5 function=interrupt1845.3.6 function=monitor1845.3.7 language=default1845.3.8 language=extended1845.3.9 memory=constseg1855.3.10 memory=dataseg1855.3.11 memory=default1855.3.12 memory=no_init1865.3.13 warnings=default1865.3.14 warnings=off1865.3.15 warnings=on1865.4 C430的预定义符号1865.4.1 DATE1875.4.2 FILE1875.4.3 IAR_SYSTEMS_ICC1875.4.4 LINE1875.4.5 STDC1875.4.6 TID1875.4.7 TIME1885.4.8 VER1885.5 C430的本征函数1885.5.1 _args$1885.5.2 _argt$1895.5.3 _BIC_SR1895.5.4 _BIS_SR1905.5.5 _DINT1905.5.6 _EINT1905.5.7 _NOP1905.5.8 _OPC1905.6 C430的汇编语言接口1915.6.1 创建汇编子程序框架1915.6.2 调用规则1915.6.3 C程序调用汇编子程序1935.7 C430的段定义1935.7.1 存储器分布与段定义1945.7.2 CCSTR段1945.7.3 CDATA0段1945.7.4 CODE段1955.7.5 CONST1955.7.6 CSTACK1955.7.7 CSTR1955.7.8 ECSTR1955.7.9 IDATA01965.7.10 INTVEC1965.7.11 NO_INIT1965.7.12 UDATA0196第6章 C430的库函数6.1 引言1976.1.1 库模块文件1976.1.2 头文件1976.1.3 库定义汇总1976.2C 库函数参考2046.2.1 C库函数的说明格式2046.2.2 C库函数说明204第7章 C430编译器的诊断消息7.1 编译诊断消息的类型2307.2 编译出错消息2317.3 编译警告消息243附录 AMSP430系列FLASH型芯片资料248附录 BProF149实验系统251附录 CMSP430x14x.H文件253附录 DIAR MSP430 C语言产品介绍275
上传时间: 2014-05-05
上传用户:253189838
MSP430系列超低功耗16位单片机原理与应用TI公司的MSP430系列微控制器是一个近期推出的单片机品种。它在超低功耗和功能集成上都有一定的特色,尤其适合应用在自动信号采集系统、液晶显示智能化仪器、电池供电便携式装置、超长时间连续工作设备等领域。《MSP430系列超低功耗16位单片机原理与应用》对这一系列产品的原理、结构及内部各功能模块作了详细的说明,并以方便工程师及程序员使用的方式提供软件和硬件资料。由于MSP430系列的各个不同型号基本上是这些功能模块的不同组合,因此,掌握《MSP430系列超低功耗16位单片机原理与应用》的内容对于MSP430系列的原理理解和应用开发都有较大的帮助。《MSP430系列超低功耗16位单片机原理与应用》的内容主要根据TI公司的《MSP430 Family Architecture Guide and Module Library》一书及其他相关技术资料编写。 《MSP430系列超低功耗16位单片机原理与应用》供高等院校自动化、计算机、电子等专业的教学参考及工程技术人员的实用参考,亦可做为应用技术的培训教材。MSP430系列超低功耗16位单片机原理与应用 目录 第1章 MSP430系列1.1 特性与功能1.2 系统关键特性1.3 MSP430系列的各种型号??第2章 结构概述2.1 CPU2.2 代码存储器?2.3 数据存储器2.4 运行控制?2.5 外围模块2.6 振荡器、倍频器和时钟发生器??第3章 系统复位、中断和工作模式?3.1 系统复位和初始化3.2 中断系统结构3.3 中断处理3.3.1 SFR中的中断控制位3.3.2 外部中断3.4 工作模式3.5 低功耗模式3.5.1 低功耗模式0和模式13.5.2 低功耗模式2和模式33.5.3 低功耗模式43.6 低功耗应用要点??第4章 存储器组织4.1 存储器中的数据4.2 片内ROM组织4.2.1 ROM表的处理4.2.2 计算分支跳转和子程序调用4.3 RAM与外围模块组织4.3.1 RAM4.3.2 外围模块--地址定位4.3.3 外围模块--SFR??第5章 16位CPU?5.1 CPU寄存器5.1.1 程序计数器PC5.1.2 系统堆栈指针SP5.1.3 状态寄存器SR5.1.4 常数发生寄存器CG1和CG2?5.2 寻址模式5.2.1 寄存器模式5.2.2 变址模式5.2.3 符号模式5.2.4 绝对模式5.2.5 间接模式5.2.6 间接增量模式5.2.7 立即模式5.2.8 指令的时钟周期与长度5.3 指令集概述5.3.1 双操作数指令5.3.2 单操作数指令5.3.3 条件跳转5.3.4 模拟指令的简短格式5.3.5 其他指令5.4 指令分布??第6章 硬件乘法器?6.1 硬件乘法器的操作6.2 硬件乘法器的寄存器6.3 硬件乘法器的SFR位6.4 硬件乘法器的软件限制6.4.1 硬件乘法器的软件限制--寻址模式6.4.2 硬件乘法器的软件限制--中断程序??第7章 振荡器与系统时钟发生器?7.1 晶体振荡器7.2 处理机时钟发生器7.3 系统时钟工作模式7.4 系统时钟控制寄存器7.4.1 模块寄存器7.4.2 与系统时钟发生器相关的SFR位7.5 DCO典型特性??第8章 数字I/O配置?8.1 通用端口P08.1.1 P0的控制寄存器8.1.2 P0的原理图8.1.3 P0的中断控制功能8.2 通用端口P1、P28.2.1 P1、P2的控制寄存器8.2.2 P1、P2的原理图8.2.3 P1、P2的中断控制功能8.3 通用端口P3、P48.3.1 P3、P4的控制寄存器8.3.2 P3、P4的原理图8.4 LCD端口8.5 LCD端口--定时器/端口比较器??第9章 通用定时器/端口模块?9.1 定时器/端口模块操作9.1.1 定时器/端口计数器TPCNT1--8位操作9.1.2 定时器/端口计数器TPCNT2--8位操作9.1.3 定时器/端口计数器--16位操作9.2 定时器/端口寄存器9.3 定时器/端口SFR位9.4 定时器/端口在A/D中的应用9.4.1 R/D转换原理9.4.2 分辨率高于8位的转换??第10章 定时器?10.1 Basic Timer110.1.1 Basic Timer1寄存器10.1.2 SFR位10.1.3 Basic Timer1的操作10.1.4 Basic Timer1的操作--LCD时钟信号fLCD?10.2 8位间隔定时器/计数器10.2.1 8位定时器/计数器的操作10.2.2 8位定时器/计数器的寄存器10.2.3 与8位定时器/计数器有关的SFR位10.2.4 8位定时器/计数器在UART中的应用10.3 看门狗定时器11.1.3 比较模式11.1.4 输出单元11.2 TimerA的寄存器11.2.1 TimerA控制寄存器TACTL11.2.2 捕获/比较控制寄存器CCTL11.2.3 TimerA中断向量寄存器11.3 TimerA的应用11.3.1 TimerA增计数模式应用11.3.2 TimerA连续模式应用11.3.3 TimerA增/减计数模式应用11.3.4 TimerA软件捕获应用11.3.5 TimerA处理异步串行通信协议11.4 TimerA的特殊情况11.4.1 CCR0用做周期寄存器11.4.2 定时器寄存器的启/停11.4.3 输出单元Unit0??第12章 USART外围接口--UART模式?12.1 异步操作12.1.1 异步帧格式12.1.2 异步通信的波特率发生器12.1.3 异步通信格式12.1.4 线路空闲多处理机模式12.1.5 地址位格式12.2 中断与控制功能12.2.1 USART接收允许12.2.2 USART发送允许12.2.3 USART接收中断操作12.2.4 USART发送中断操作12.3 控制与状态寄存器12.3.1 USART控制寄存器UCTL12.3.2 发送控制寄存器UTCTL12.3.3 接收控制寄存器URCTL12.3.4 波特率选择和调制控制寄存器12.3.5 USART接收数据缓存URXBUF12.3.6 USART发送数据缓存UTXBUF12.4 UART模式--低功耗模式应用特性12.4.1 由UART帧启动接收操作12.4.2 时钟频率的充分利用与UART模式的波特率12.4.3 节约MSP430资源的多处理机模式12.5 波特率的计算??第13章 USART外围接口--SPI模式?13.1 USART的同步操作13.1.1 SPI模式中的主模式--MM=1、SYNC=113.1.2 SPI模式中的从模式--MM=0、SYNC=113.2 中断与控制功能13.2.1 USART接收允许13.2.2 USART发送允许13.2.3 USART接收中断操作13.2.4 USART发送中断操作13.3 控制与状态寄存器13.3.1 USART控制寄存器13.3.2 发送控制寄存器UTCTL13.3.3 接收控制寄存器URCTL13.3.4 波特率选择和调制控制寄存器13.3.5 USART接收数据缓存URXBUF13.3.6 USART发送数据缓存UTXBUF??第14章 液晶显示驱动?14.1 LCD驱动基本原理14.2 LCD控制器/驱动器14.2.1 LCD控制器/驱动器功能14.2.2 LCD控制与模式寄存器14.2.3 LCD显示内存14.2.4 LCD操作软件例程14.3 LCD端口功能14.4 LCD与端口模式混合应用实例??第15章 A/D转换器?15.1 概述15.2 A/D转换操作15.2.1 A/D转换15.2.2 A/D中断15.2.3 A/D量程15.2.4 A/D电流源15.2.5 A/D输入端与多路切换15.2.6 A/D接地与降噪15.2.7 A/D输入与输出引脚15.3 A/D控制寄存器??第16章 其他模块16.1 晶体振荡器16.2 上电电路16.3 晶振缓冲输出??附录A 外围模块地址分配?附录B 指令集描述?B1 指令汇总B2 指令格式B3 不增加ROM开销的指令模拟B4 指令说明B5 用几条指令模拟的宏指令??附录C EPROM编程?C1 EPROM操作C2 快速编程算法C3 通过串行数据链路应用\"JTAG\"特性的EPROM模块编程C4 通过微控制器软件实现对EPROM模块编程??附录D MSP430系列单片机参数表?附录E MSP430系列单片机产品编码?附录F MSP430系列单片机封装形式?
上传时间: 2014-05-07
上传用户:lwq11
单片机语言C51应用实战集锦使用C语言开发速度快,代码可重复使用,程序结构清晰、易懂、易维护,易开发一些比较大型的项目。目前,许多编译器都已经支持了C51,而且是Windows视窗界面。Kelic51是目前单片机开发最为流行的软件。本书收集并整理了许多实用的采用C51单片机开发的程序,这些程序既可以给读者以开拓思路,参考的用途又是实际的开发程序,可以直接作为程序应用在相同的开发系统上。通过本书的学习,读者可以进一步了解和掌握C51编程的思路和方法。单片机语言C51应用实战集锦目录:程序一 实时时钟芯片DS1302的C51程序例子程序二 C430与CSI的一点区别程序三 一个菜单的例子程序四 DS1820单芯片温度测量程序五 keilc 6.20c版直接嵌入汇编的方法程序六 用计算机并口模拟SPI通信的C源程序程序七 CRC 16-SIANDARD的快速算法程序八 在PC上用并行口模拟I(平方)C总线的C源代码程序九 一种在C51中写二进制的方法程序十 CRC算法原理及C语言实现程序十一 软件陷阶程序十二 一个简单的VB串口发送程序程序十三 12864汉字液晶显示驱动程序程序十四 12232点阵液晶基本驱动程序程序十五 串口中断服务函数集程序十六 93C46读写程序程序十七 20045读写程序程序十八 一组小程序集锦程序十九 AVR asm源程序程序二十 AVR单片机一个简单的通信程序程序二十一 TG19264A接口程序程序二十二 TG19264A接口程序(AVR模拟方式)程序二十三 常用的几种码制转换BCD,HEX,BIN程序二十四 16x2字符液晶屏驱动演示程序一程序二十五 16x2字符液晶屏驱动演示程序二程序二十六 PS7219代码程序二十七 2051的AD代码程序二十八 ARV19264型液晶显示字库程序二十九 液晶CKW19264A型接口程序(模拟方式)程序三十 I(平方)C总线驱动程序程序三十一 240128型液晶代码程序三十二 飞机游戏程序三十三 PC键代码程序三十四 拼音输入法模块程序三十五 串行口代码程序三十六 蛇游戏代码程序三十七 与液晶模块T6963C连接代码程序三十八 键盘输入法设计草案程序三十九 16*4液晶汉字代码程序四十 智能化家电控制附录C 单片机C51编程几个有用的模块附录D 头文件W77E58.h附录A MCS-51单片机定点运算子程序库附录B MCS-51单片机浮点运算子程序库
上传时间: 2013-11-02
上传用户:kbnswdifs
本文依据集成电路设计方法学,探讨了一种基于标准Intel 8086 微处理器的单芯片计算机平台的架构。研究了其与SDRAM,8255 并行接口等外围IP 的集成,并在对AMBA协议和8086 CPU分析的基础上,采用遵从AMBA传输协议的系统总线代替传统的8086 CPU三总线结构,搭建了基于8086 IP 软核的单芯片计算机系统,并实现了FPGA 功能演示。关键词:微处理器; SoC;单芯片计算机;AMBA 协议 Design of 8086 CPU Based Computer-on-a-chip System(School of Electrical Engineering and Automation, Heifei University of Technology, Hefei, 230009,China)Abstract: According to the IC design methodology, this paper discusses the design of one kind of Computer-on-a-chip system architecture, which is based on the standard Intel8086 microprocessor,investigates how to integrate the 8086 CPU and peripheral IP such as, SDRAM controller, 8255 PPI etc. Based on the analysis of the standard Intel8086 microprocessor and AMBA Specification,the Computer-on-a-chip system based on 8086 CPU which uses AMBA bus instead of traditional three-bus structure of 8086 CPU is constructed, and the FPGA hardware emulation is fulfilled.Key words: Microprocessor; SoC; Computer-on-a-chip; AMBA Specification
上传时间: 2013-12-27
上传用户:kernor
基于单DSP的VoIP模拟电话适配器研究与实现:提出和实现了一种新颖的基于单个通用数字信号处理器(DSP)的VoIP模拟电话适配器方案。DSP的I/O和存储资源非常有限,通常适于运算密集型应用,不适宜控制密集型应用[5]。该系统高效利用单DSP的I/O和片内外存储器资源,采用μC/OS-II嵌入式实时操作系统,支持SIP和TCP-UDP/IP协议,通过LAN或者宽带接入,使普通电话机成为Internet终端,实现IP电话。该系统软硬件结构紧凑高效,运行稳定,成本低,具有广阔的应用前景。关键词:模拟电话适配器;IP电话;数字信号处理器;μC/OS-II 【Abstract】This paper presents a VoIP ATA solution based on a single digital signal processor (DSP). DSPs are suitable for arithmetic-intensiveapplication and unsuitable for control-intensive application because of the limitation of I/O and memory resources. This solution is based on a 16-bitfixed-point DSP and μC/OS-II embedded real-time operating system. It makes good use of the limited resources, supports SIP and TCP-UDP/IPprotocol. It can connect the analog telephone to Internet and realize the VoIP application. This system has a great future for its high efficiency andlow cost.【Key words】Analog telephone adapter (ATA); Voice over Internet protocol (VoIP); Digital signal processor (DSP); μC/OS-II Research and Implementation of VoIPATA Based on Single DSP
上传时间: 2013-11-20
上传用户:Wwill
MSP430系列flash型超低功耗16位单片机MSP430系列单片机在超低功耗和功能集成等方面有明显的特点。该系列单片机自问世以来,颇受用户关注。在2000年该系列单片机又出现了几个FLASH型的成员,它们除了仍然具备适合应用在自动信号采集系统、电池供电便携式装置、超长时间连续工作的设备等领域的特点外,更具有开发方便、可以现场编程等优点。这些技术特点正是应用工程师特别感兴趣的。《MSP430系列FLASH型超低功耗16位单片机》对该系列单片机的FLASH型成员的原理、结构、内部各功能模块及开发方法与工具作详细介绍。MSP430系列FLASH型超低功耗16位单片机 目录 第1章 引 论1.1 MSP430系列单片机1.2 MSP430F11x系列1.3 MSP430F11x1系列1.4 MSP430F13x系列1.5 MSP430F14x系列第2章 结构概述2.1 引 言2.2 CPU2.3 程序存储器2.4 数据存储器2.5 运行控制2.6 外围模块2.7 振荡器与时钟发生器第3章 系统复位、中断及工作模式3.1 系统复位和初始化3.1.1 引 言3.1.2 系统复位后的设备初始化3.2 中断系统结构3.3 MSP430 中断优先级3.3.1 中断操作--复位/NMI3.3.2 中断操作--振荡器失效控制3.4 中断处理 3.4.1 SFR中的中断控制位3.4.2 中断向量地址3.4.3 外部中断3.5 工作模式3.5.1 低功耗模式0、1(LPM0和LPM1)3.5.2 低功耗模式2、3(LPM2和LPM3)3.5.3 低功耗模式4(LPM4)22 3.6 低功耗应用的要点23第4章 存储空间4.1 引 言4.2 存储器中的数据4.3 片内ROM组织4.3.1 ROM 表的处理4.3.2 计算分支跳转和子程序调用4.4 RAM 和外围模块组织4.4.1 RAM4.4.2 外围模块--地址定位4.4.3 外围模块--SFR4.5 FLASH存储器4.5.1 FLASH存储器的组织4.5.2 FALSH存储器的数据结构4.5.3 FLASH存储器的控制寄存器4.5.4 FLASH存储器的安全键值与中断4.5.5 经JTAG接口访问FLASH存储器39第5章 16位CPU5.1 CPU寄存器5.1.1 程序计数器PC5.1.2 系统堆栈指针SP5.1.3 状态寄存器SR5.1.4 常数发生寄存器CG1和CG25.2 寻址模式5.2.1 寄存器模式5.2.2 变址模式5.2.3 符号模式5.2.4 绝对模式5.2.5 间接模式5.2.6 间接增量模式5.2.7 立即模式5.2.8 指令的时钟周期与长度5.3 指令组概述5.3.1 双操作数指令5.3.2 单操作数指令5.3.3 条件跳转5.3.4 模拟指令的简短格式5.3.5 其他指令第6章 硬件乘法器6.1 硬件乘法器6.2 硬件乘法器操作6.2.1 无符号数相乘(16位×16位、16位×8位、8位×16位、8位×8位)6.2.2 有符号数相乘(16位×16位、16位×8位、8位×16位、8位×8位)6.2.3 无符号数乘加(16位×16位、16位×8位、8位×16位、8位×8位)6.2.4 有符号数乘加(16位×16位、16位×8位、8位×16位、8位×8位)6.3 硬件乘法器寄存器6.4 硬件乘法器的软件限制6.4.1 寻址模式6.4.2 中断程序6.4.3 MACS第7章 基础时钟模块7.1 基础时钟模块7.2 LFXT1与XT27.2.1 LFXT1振荡器7.2.2 XT2振荡器7.2.3 振荡器失效检测7.2.4 XT振荡器失效时的DCO7.3 DCO振荡器7.3.1 DCO振荡器的特性7.3.2 DCO调整器7.4 时钟与运行模式7.4.1 由PUC启动7.4.2 基础时钟调整7.4.3 用于低功耗的基础时钟特性7.4.4 选择晶振产生MCLK7.4.5 时钟信号的同步7.5 基础时钟模块控制寄存器7.5.1 DCO时钟频率控制7.5.2 振荡器与时钟控制寄存器7.5.3 SFR控制位第8章 输入输出端口8.1 引 言8.2 端口P1、P28.2.1 P1、P2的控制寄存器8.2.2 P1、P2的原理8.2.3 P1、P2的中断控制功能8.3 端口P3、P4、P5和P68.3.1 端口P3、P4、P5和P6的控制寄存器8.3.2 端口P3、P4、P5和P6的端口逻辑第9章 看门狗定时器WDT9.1 看门狗定时器9.2 WDT寄存器9.3 WDT中断控制功能9.4 WDT操作第10章 16位定时器Timer_A10.1 引 言10.2 Timer_A的操作10.2.1 定时器模式控制10.2.2 时钟源选择和分频10.2.3 定时器启动10.3 定时器模式10.3.1 停止模式10.3.2 增计数模式10.3.3 连续模式10.3.4 增/减计数模式10.4 捕获/比较模块10.4.1 捕获模式10.4.2 比较模式10.5 输出单元10.5.1 输出模式10.5.2 输出控制模块10.5.3 输出举例10.6 Timer_A的寄存器10.6.1 Timer_A控制寄存器TACTL10.6.2 Timer_A寄存器TAR10.6.3 捕获/比较控制寄存器CCTLx10.6.4 Timer_A中断向量寄存器10.7 Timer_A的UART应用 第11章 16位定时器Timer_B11.1 引 言11.2 Timer_B的操作11.2.1 定时器长度11.2.2 定时器模式控制11.2.3 时钟源选择和分频11.2.4 定时器启动11.3 定时器模式11.3.1 停止模式11.3.2 增计数模式11.3.3 连续模式11.3.4 增/减计数模式11.4 捕获/比较模块11.4.1 捕获模式11.4.2 比较模式11.5 输出单元11.5.1 输出模式11.5.2 输出控制模块11.5.3 输出举例11.6 Timer_B的寄存器11.6.1 Timer_B控制寄存器TBCTL11.6.2 Timer_B寄存器TBR11.6.3 捕获/比较控制寄存器CCTLx11.6.4 Timer_B中断向量寄存器第12章 USART通信模块的UART功能12.1 异步模式12.1.1 异步帧格式12.1.2 异步通信的波特率发生器12.1.3 异步通信格式12.1.4 线路空闲多机模式12.1.5 地址位多机通信格式12.2 中断和中断允许12.2.1 USART接收允许12.2.2 USART发送允许12.2.3 USART接收中断操作12.2.4 USART发送中断操作12.3 控制和状态寄存器12.3.1 USART控制寄存器UCTL12.3.2 发送控制寄存器UTCTL12.3.3 接收控制寄存器URCTL12.3.4 波特率选择和调整控制寄存器12.3.5 USART接收数据缓存URXBUF12.3.6 USART发送数据缓存UTXBUF12.4 UART模式,低功耗模式应用特性12.4.1 由UART帧启动接收操作12.4.2 时钟频率的充分利用与UART的波特率12.4.3 多处理机模式对节约MSP430资源的支持12.5 波特率计算 第13章 USART通信模块的SPI功能13.1 USART同步操作13.1.1 SPI模式中的主模式13.1.2 SPI模式中的从模式13.2 中断与控制功能 13.2.1 USART接收/发送允许位及接收操作13.2.2 USART接收/发送允许位及发送操作13.2.3 USART接收中断操作13.2.4 USART发送中断操作13.3 控制与状态寄存器13.3.1 USART控制寄存器13.3.2 发送控制寄存器UTCTL13.3.3 接收控制寄存器URCTL13.3.4 波特率选择和调制控制寄存器13.3.5 USART接收数据缓存URXBUF13.3.6 USART发送数据缓存UTXBUF第14章 比较器Comparator_A14.1 概 述14.2 比较器A原理14.2.1 输入模拟开关14.2.2 输入多路切换14.2.3 比较器14.2.4 输出滤波器14.2.5 参考电平发生器14.2.6 比较器A中断电路14.3 比较器A控制寄存器14.3.1 控制寄存器CACTL114.3.2 控制寄存器CACTL214.3.3 端口禁止寄存器CAPD14.4 比较器A应用14.4.1 模拟信号在数字端口的输入14.4.2 比较器A测量电阻元件14.4.3 两个独立电阻元件的测量系统14.4.4 比较器A检测电流或电压14.4.5 比较器A测量电流或电压14.4.6 测量比较器A的偏压14.4.7 比较器A的偏压补偿14.4.8 增加比较器A的回差第15章 模数转换器ADC1215.1 概 述15.2 ADC12的工作原理及操作15.2.1 ADC内核15.2.2 参考电平15.3 模拟输入与多路切换15.3.1 模拟多路切换15.3.2 输入信号15.3.3 热敏二极管的使用15.4 转换存储15.5 转换模式15.5.1 单通道单次转换模式15.5.2 序列通道单次转换模式15.5.3 单通道重复转换模式15.5.4 序列通道重复转换模式15.5.5 转换模式之间的切换15.5.6 低功耗15.6 转换时钟与转换速度15.7 采 样15.7.1 采样操作15.7.2 采样信号输入选择15.7.3 采样模式15.7.4 MSC位的使用15.7.5 采样时序15.8 ADC12控制寄存器15.8.1 控制寄存器ADC12CTL0和ADC12CTL115.8.2 转换存储寄存器ADC12MEMx15.8.3 控制寄存器ADC12MCTLx15.8.4 中断标志寄存器ADC12IFG.x和中断允许寄存器ADC12IEN.x15.8.5 中断向量寄存器ADC12IV15.9 ADC12接地与降噪第16章 FLASH型芯片的开发16.1 开发系统概述16.1.1 开发技术16.1.2 MSP430系列的开发16.1.3 MSP430F系列的开发16.2 FLASH型的FET开发方法16.2.1 MSP430芯片的JTAG接口16.2.2 FLASH型仿真工具16.3 FLASH型的BOOT ROM16.3.1 标准复位过程和进入BSL过程16.3.2 BSL的UART协议16.3.3 数据格式16.3.4 退出BSL16.3.5 保护口令16.3.6 BSL的内部设置和资源附录A 寻址空间附录B 指令说明B.1 指令汇总B.2 指令格式B.3 不增加ROM开销的模拟指令B.4 指令说明(字母顺序)B.5 用几条指令模拟的宏指令附录C MSP430系列单片机参数表附录D MSP430系列单片机封装形式附录E MSP430系列器件命名
上传时间: 2014-04-28
上传用户:sssnaxie
电梯的开关门过程是一个变速运动过程 ,需要对电梯门系统的驱动电机进行调速控制;本文提出了一种以高性能单片微机87C196MC 为核心的电梯门机变频调速控制系统,功率驱动电路采用驱动MOSFET 的专用集成电路IR2130;分析了基于PWM 技术控制电梯门机运行的方法;采用单片微机和功率驱动专用集成电路将门系统电机的交流变频器和驱动控制器集为一体,得到了一种可靠性高、控制灵活、成本低、体积小的电梯门机控制器。关键字:变频器;正弦脉宽调制;电梯门机系统 电梯的门机系统是电梯的一个非常重要的子系统。门机系统性能的优劣直接关系着整个电梯系统能否正常地运行。所以说,对门机系统的设计开发及制造是电梯系统设计开发及制造的一个关键环节。从控制这个角度来说,研究的重点应侧重于如何把先进的变频调速技术应用到门机系统中,使门机系统能高效经济可靠地运行。在目前的工程实践中,交流电机的变频调速策略主要有两种方法,即正弦脉宽调制方法(SPWM)和空间矢量脉宽调制方法(SVPWM)。其中SPWM 的基本原理就是用正弦波和高频三角载波比较产生PWM 脉冲序列:当基波(正弦波)高于三角载波时,相应的开关器件导通,反之,当基波低于三角载波时,相应的开关器件截止。产生的PWM 脉冲序列作为逆变器功率开关器件的驱动控制信号。本电梯门机变频调速系统就是采用SPWM 调制方法,采用INTEL 公司的16 位高性能微控制器87C196MC 作为核心控制芯片,由87C196MC 的PWM 波形发生模块产生PWM 信号去驱动功率电路,从而带动门机按照预先设定的运行曲线运行。
上传时间: 2013-10-16
上传用户:zhaoman32