樣板 B 樹 ( B - tree ) 規則 : (1) 每個節點內元素個數在 [MIN,2*MIN] 之間, 但根節點元素個數為 [1,2*MIN] (2) 節點內元素由小排到大, 元素不重複 (3) 每個節點內的指標個數為元素個數加一 (4) 第 i 個指標所指向的子節點內的所有元素值皆小於父節點的第 i 個元素 (5) B 樹內的所有末端節點深度一樣
上传时间: 2017-05-14
上传用户:日光微澜
欧几里德算法:辗转求余 原理: gcd(a,b)=gcd(b,a mod b) 当b为0时,两数的最大公约数即为a getchar()会接受前一个scanf的回车符
上传时间: 2014-01-10
上传用户:2467478207
数据结构课程设计 数据结构B+树 B+ tree Library
上传时间: 2013-12-31
上传用户:semi1981
针对重构文件的大小、动态容错时隙的长短、实现的复杂性、模块间通信方式、冗余资源的比例与布局等关键问题进行了分析。并对一些突出问题,提出了基于算法和资源多级分块的解决方法,阐述了新方法的性能,及其具有的高灵活性高、粒度等参数可选择、重构布线可靠性高、系统工作频率有保障的优点。
上传时间: 2014-12-28
上传用户:Yue Zhong
针对重构文件的大小、动态容错时隙的长短、实现的复杂性、模块间通信方式、冗余资源的比例与布局等关键问题进行了分析。并对一些突出问题,提出了基于算法和资源多级分块的解决方法,阐述了新方法的性能,及其具有的高灵活性高、粒度等参数可选择、重构布线可靠性高、系统工作频率有保障的优点。
上传时间: 2013-11-23
上传用户:cylnpy
(1) 、用下述两条具体规则和规则形式实现.设大写字母表示魔王语言的词汇 小写字母表示人的语言词汇 希腊字母表示可以用大写字母或小写字母代换的变量.魔王语言可含人的词汇. (2) 、B→tAdA A→sae (3) 、将魔王语言B(ehnxgz)B解释成人的语言.每个字母对应下列的语言.
上传时间: 2013-12-30
上传用户:ayfeixiao
源代码\用动态规划算法计算序列关系个数 用关系"<"和"="将3个数a,b,c依次序排列时,有13种不同的序列关系: a=b=c,a=b<c,a<b=v,a<b<c,a<c<b a=c<b,b<a=c,b<a<c,b<c<a,b=c<a c<a=b,c<a<b,c<b<a 若要将n个数依序列,设计一个动态规划算法,计算出有多少种不同的序列关系, 要求算法只占用O(n),只耗时O(n*n).
上传时间: 2013-12-26
上传用户:siguazgb
* 高斯列主元素消去法求解矩阵方程AX=B,其中A是N*N的矩阵,B是N*M矩阵 * 输入: n----方阵A的行数 * a----矩阵A * m----矩阵B的列数 * b----矩阵B * 输出: det----矩阵A的行列式值 * a----A消元后的上三角矩阵 * b----矩阵方程的解X
上传时间: 2015-07-26
上传用户:xauthu
一:需求分析 1. 问题描述 魔王总是使用自己的一种非常精练而抽象的语言讲话,没人能听懂,但他的语言是可逐步解释成人能听懂的语言,因为他的语言是由以下两种形式的规则由人的语言逐步抽象上去的: ----------------------------------------------------------- (1) a---> (B1)(B2)....(Bm) (2)[(op1)(p2)...(pn)]---->[o(pn)][o(p(n-1))].....[o(p1)o] ----------------------------------------------------------- 在这两种形式中,从左到右均表示解释.试写一个魔王语言的解释系统,把 他的话解释成人能听得懂的话. 2. 基本要求: 用下述两条具体规则和上述规则形式(2)实现.设大写字母表示魔王语言的词汇 小写字母表示人的语言的词汇 希腊字母表示可以用大写字母或小写字母代换的变量.魔王语言可含人的词汇. (1) B --> tAdA (2) A --> sae 3. 测试数据: B(ehnxgz)B 解释成 tsaedsaeezegexenehetsaedsae若将小写字母与汉字建立下表所示的对应关系,则魔王说的话是:"天上一只鹅地上一只鹅鹅追鹅赶鹅下鹅蛋鹅恨鹅天上一只鹅地上一只鹅". | t | d | s | a | e | z | g | x | n | h | | 天 | 地 | 上 | 一只| 鹅 | 追 | 赶 | 下 | 蛋 | 恨 |
上传时间: 2014-12-02
上传用户:jkhjkh1982
1.有三根杆子A,B,C。A杆上有若干碟子 2.每次移动一块碟子,小的只能叠在大的上面 3.把所有碟子从A杆全部移到C杆上 经过研究发现,汉诺塔的破解很简单,就是按照移动规则向一个方向移动金片: 如3阶汉诺塔的移动:A→C,A→B,C→B,A→C,B→A,B→C,A→C 此外,汉诺塔问题也是程序设计中的经典递归问题
上传时间: 2016-07-25
上传用户:gxrui1991