这是 输出电压电流均可调的高效DC电源:本作品是基于开关电源基本拓扑之一的正激拓扑设计而成的输出小电压,大电流DC-DC开关稳压电源,通过电压反馈环节对主电路的输出进行稳压,本 文所设计的开关电源输入为DC41-57开关频率为75kHz,实现输出电压0-30V可调,恒流限制0-3A可调。单管正激变换器具有外围电路简单,效率高,抗过载能力强,输入与输出隔离等优点,适合低压、中小功率的电能变换,恒压过程采用OP07作为比较器,改变基准电压,从而实现输出电压可调,原副边用光耦隔离,恒流部分也采用比较器,但是电流采样采的是负压,这样只调节电位器就可改变OP07输入端的电压大小,从而调节恒流限制。
标签: 2012 输出可调 直流稳压电源 大学生电子设计竞赛
上传时间: 2013-10-12
上传用户:1142895891
COOLMOS ICE2A165/265/365是Infineon technologies 公司推出的系列PWM+MOSFET二合一芯片,其突出特点是由其组成的开关电源,在市电电网中工作时,无需外加散热器即可输出20~50W的输出功率;且能自动降低空载时的工作频率,从而降低待机状态的损耗;同时还具有过、欠压保护、过热保护、过流保护以及自恢复功能,因而在中小功率开关电源中有着广泛 的应用前景
上传时间: 2013-10-17
上传用户:HGH77P99
本公司生产以下产品 1 单相逆变三相交流电源: 该电源在输入单相AC180V~AC260V电压时,输出三相可根据用户要求而设定的电压AC100V~AC440V。当输入电压和负载变动时可将输出电压稳定在一个固定的值上。输出频率可选:范围0Hz~400Hz。 功率为: 0.4~11KW 。该电源体积小重量轻(无升压工频变压器)谐波小稳定可靠。三相输出相位互差120°±0.5°,输出频率变化﹤0.1Hz/24h,效率﹥95%, 简要说明: HS-MYL100-2R2系列 采用电机控制专用芯片DSP数字信号处理器和先进的磁场定向矢量控制算法,完成电机的完全解耦控制,实现真正的电流矢量控制,具有低频高启动转矩、精准控制和高速动态响应能力。提供V/F控制、无PG矢量控制(SVC)、有PG矢量控制(VC),并根据不同的行业需求,提供对应功能的多种专业扩展卡实现各种行业专业解决方案,可广泛应用于要求低成本、高性能、高专业化程度等的各种行业专业场合。 详细内容 控制方法:无PG矢量控制(SVC)、有PG矢量控制(VC)、V/F控制; 输出频率范围:0~600Hz,频率精度:0.01Hz; 起动转矩:有PG矢量控制0Hz/180%(VC);无PG矢量控制0.5Hz/150%(SVC); 调速范围:有PG矢量控制1:1000;无PG矢量控制1:100; 15kW规格以下内置制动单元,如需快速停车,可直接连接制动电阻; 16段多端速控制、简易PLC控制、摆频控制; 内置多功能组合数字PID调解控制; 5路数字量输入、2路模拟量输入、1路模拟量输出、1路继电器输出、1路开路集电极输出,外接扩展卡(选配)可增加3路数字量输入、2路模拟量输入、1路模拟量输出、1路脉冲量输出、1路继电器输出、2路开路集电极输出; 转速追踪再起动功能,实现对旋转中的电机平滑无冲击起动; 自动电压调速调整:当电网电压变化时,能自动保持输出电压恒定; 提供可选择的外引LED/LCD操作面板,实现方便快捷的操作; 节能运行:先进的职能控制方式,具有强大的自学功能,自动适应工况负载的变化,自动实现最佳的节能运行; LED操作面板具备多机参数拷贝功能,大大方便配套用户对功能参数的批量设置; 完善的保护功能:短路、过流、缺项、电子热继电器、过压、欠压、过载、过热、外部设备故障、通信故障保护; 用户密码设置:对用户设定的参数进行保密,并防止非授权人员修改; 工作电压范围广,长期低电压时电压时通过调制技术,保证带载能力; 慧思商贸有限公司 联系电话:18993112627 13919827366
上传时间: 2013-11-19
上传用户:哈哈hah
随着功率开关器件的发展,电力电子装置日益小型化和高频化,电气性能大幅提高,但是随之产生的高次谐波却对电网造成严重污染。在电力电子设备中,整流器(AC/DC变流器)占有较大的比例,是主要的污染源。由于固态感应加热电源对于电网呈现非线性特性,从电网中输出的电流就不是标准的正弦曲线。高频谐波电流对电力设施产生过热或其他危害。 Boost电路应用到功率因数校正方面已经较为成熟,对于几百瓦小功率的功率因数校正,常规的电路是可以实现的。但是对于大功率诸如感应加热电源,还存在很多的实际问题。为了解决开关器件由于二极管反向恢复时产生的冲击电流而易损坏的情况,减少开关器件在高频下的开关损耗,本文采用一种无源无损缓冲电路取代传统的LC滤波电路。在分析了软开关电路的工作原理以及逆变模块的分时-移相功率控制策略后,应用Matlab软件进行了仿真,并通过实验结果验证了理论分析的正确性。
上传时间: 2014-12-24
上传用户:RQB123
负载是指连接在电路中的电源两端的电子元件。电路中不应没有负载而直接把电源两极相连,此连接称为短路。常用的负载有电阻、引擎和灯泡等可消耗功率的元件。不消耗功率的元件,如电容,也可接上去,但此情况为断路。
上传时间: 2013-11-06
上传用户:txfyddz
本书内容翔实、精炼,介绍了进行电源设计必须了解的几乎所有相关的知识,包括以下几个方面。 拓扑概述——常用的15种拓扑;功率开关管的最大电流应力和最大电压应力;对于有确定的输入输出电压、输出功率的功率开关管,最佳拓扑的选择;最佳拓扑的选择;最佳功率开关管的选择。 高频磁原理——铁氧体磁心磁带、集肤效应和邻近效应损耗。 变压器设计——与频率、磁密度、铁心面积和绕线面积以及拓扑有关的函数公式推导;磁心、线圈、变压器总损耗,以及温升的计算;使用常用拓扑的变压器设计实例。 直流电流偏置电感设计——导通直流偏置电流的电感设计。 磁放大器、缓冲器的设计以及谐振变换器。 反馈环稳定性。 主要拓扑的精确波形。 本书第二版增加了该领域内目前最受关注的关于电流的章节,包括功率因数校正、荧火灯使用的高频镇流器和笔记本电脑设计的低输入电压电源。 内容简介本书从最基本的开关变换器分析入手,系统地阐述开关电源电路(设计)的功率转换和脉宽调制原理、驱动电路与闭环反馈的稳定性及磁性元件的设计原则;对各功率变换器器件的参数选择和变换器各部分波形进行了定量分析;利用闭环反馈振荡机理,详细讨论了开关电源电流、电压环反馈系统的稳定性;论述高频开关电源在功率因数校正技术、软开关技术,以及电子镇流器技术等方面的最新动态和发展趋势。内容上不仅对各功率变换器的原理有详尽、系统的论述,同时给出多种新型的拓扑及对应电路反馈环的设计实例。 本书可以作为学习、研究高频开关电源的高校师生的教材,也可作为从事开关电源设计、开发的工程师的设计参考资料。
标签: Switching_Power_Supply_Design Second_Edition 开关电源设计
上传时间: 2013-11-21
上传用户:13788529953
其实节能灯故障中多数情况是灯管坏了,电子镇流器往往是完好的,只要稍作改动,花费两三元钱的代价就可以改制成低压直流电源,其输出功率可达数瓦到十多瓦,作为充电器、随身听、MP3播放器、小收音机等的直流电源非常实惠。本文将详细介绍节能灯的电路和改制为低压直流电源的方法,供爱好者参考。
上传时间: 2014-01-23
上传用户:lgd57115700
针对开关电源产生的谐波给电网造成的污染,以及影响自身控制系统带来的危害,设计出一个通用的三相无源滤波器装置,该装置不仅能抑制谐波还能够提高系统功率因素,通过试验表明,应用这种方法能达到理想的效果,各次谐波的含量低于我国制定的标准.
上传时间: 2013-10-13
上传用户:Bert520
M8电源:如果想扩流使用,需要多个功率管并联,必须加均流电阻。并且同时要增加主滤波和泄放电阻。功率管多需要增加一级推动管。 液晶的连接图。【注意1脚位置】 液晶的背光接法:从液晶背后标记A和K的位置引出背光电源,接到M8V4电源板上标记LED的位置。注意有正负,反了背光不亮。 首次通电,需要调整液晶对比度才能显示,调整M8V4电源板上的5K可调。让显示清晰即可。
标签: 电源
上传时间: 2013-11-02
上传用户:qwer0574
一颗强劲的CPU可以带着我们在复杂的数码世界里飞速狂奔,一块超酷的显示卡会带着我们在绚丽的3D世界里领略那五光十色的震撼,一块发烧级的声卡更能带领我们进入那美妙的音乐殿堂,一个强劲而稳定工作的电脑电源,则是我们的计算机能出色工作的必要保证。 计算机开关电源工作电压较高,通过的电流较大,又工作在有自感电动势的状态下,因此,使用过程中故障率较高。对于电源产生的故障,不少朋友束手无策,其实,只要有一点 首先,我们要知道计算机开关电源的工作原理。电源先将高电压交流电(220V)通过全桥二极管(图1、2)整流以后成为高电压的脉冲直流电,再经过电容滤波(图3)以后成为高压直流电。电子电路知识,就可以轻松的维修电源。此时,控制电路控制大功率把从次级线圈输出的降压后的高频低压交流电通过整流滤波转换为能使电脑工作的低电压强电流的直流电。其中,控制电路是必不可少的部分。它能有效的监控输出端的电压值,并向功率开关三极管发出信号控制电压上下调整的幅度。在计算机开关电源中,由于电源输入部分工作在高电压、大电流的状态下,故障率最高;其次输出直流部分的整流二极管、保护二极管、大功率开关三极管较易损坏;再就是脉宽调制器TL494的4脚电压是保护电路的关键测试点。通过对多台电源的维修,总结出了对付电源常见故障的方法。
上传时间: 2013-10-19
上传用户:waitingfy