8086指令系统目录 概述 2.1节 目录 2.1.1--2.1.5(传送) 2.1.1 目录:1~3 2.1.1-1 mov类例1 mov类例2 mov类例3 mov类例4(END) 2.1.1-2. xchg --3.XLAT 查表示意图(end) 2.1.2堆栈操作指令(1) 堆栈操作指令(2) 堆栈操作指令(3) 堆栈操作指令(4) 堆栈操作指令(5)(END) 2.1.3标志传送指令(1) 标志传送指令(2)(end) 2.1.4地址传送指令(1) 地址传送指令(2) 地址传送指令(3)(end) 2.1.5输入输出指令(1) 输入输出指令(2) 输入输出指令(3)(end) 2.2节 目录 2.2.1--2.2.6(算术) 2.2.1加法指令(1) 加法指令(2) 加法指令(3) 加法指令(4) 加法指令5 end 2.2.2减法指令(1) 减法指令(2) 减法指令(3) 减法指令(4) 减法指令(5) 减法指令(6)(end) 2.2.3乘法指令(1) 乘法指令(2) 乘法指令(3)(end) 2.2.4除法指令(1) 除法指令(2)(end) 2.2.5符号扩展指令(end) 符号扩展说明 2.2.6十进制调整指令(1) 十进制调整指令(2) 十进制调整指令(3) 十进制调整指令(4) 十进制调整指令(5) 十进制调整指令(6) 十进制调整指令(7) 十进制调整指令(8) 十进制调整指令(9)(end) 2.3节 目录 2.3.1--2. 3.3(位) 2.3.1 逻辑运算指令(1) 逻辑运算指令(2) 逻辑运算指令(3) 逻辑运算指令(4) 逻辑运算指令(END) 2.3.2 移位指令(1) 移位指令(2) 移位指令(3) 移位指令(4)(end) 2.3.3 循环移位指令(1) 循环移位指令(2)(end) 2.4节 目录 2.4.1 无条件转移指令(1) 短转移的转移范围 无条件转移指令(2) 无条件转移指令(3) 无条件转移指令(4)(end) 2.4.2 条件转移指令(1) 条件转移指令(2) 条件转移指令(3) 条件转移指令(4) 条件转移指令(5)(end) 2.4.3 循环控制指令(1) 循环控制指令(2)(end) 2.4.4 子程序调用及返回指令(1) 子程序调用及返回指令(2) 子程序调用及返回指令(3) 子程序调用及返回指令(4) 子程序调用及返回指令(5) 子程序调用及返回指令(6) (end) 2.4.5 中断控制指令(1) 中断控制指令(2) 中断控制指令(3) 中断控制指令(4) 中断控制指令(5) 中断控制指令(6) 中断控制指令(7) 中断控制指令(8)(end) 2.4.6 系统功能调用(1) 系统功能调用(2) 系统功能调用(3)(end) 2.5节 目录 1---6(串操作) 串操作(1)传送 串操作(2) 串操作(3) 串操作(4)存串 串操作(5)读串、比较 串操作(6)搜索、重复前缀 串操作(7)REP 串操作(8)REPZ/REPNZ 串操作(9)前缀注释 串操作(10)例题 串操作(11)注释(end) 2.6 处理机控制类指令(1)(end)
上传时间: 2013-10-30
上传用户:大三三
有两种方式可以让设备和应用程序之间联系:1. 通过为设备创建的一个符号链;2. 通过输出到一个接口WDM驱动程序建议使用输出到一个接口而不推荐使用创建符号链的方法。这个接口保证PDO的安全,也保证安全地创建一个惟一的、独立于语言的访问设备的方法。一个应用程序使用Win32APIs来调用设备。在某个Win32 APIs和设备对象的分发函数之间存在一个映射关系。获得对设备对象访问的第一步就是打开一个设备对象的句柄。 用符号链打开一个设备的句柄为了打开一个设备,应用程序需要使用CreateFile。如果该设备有一个符号链出口,应用程序可以用下面这个例子的形式打开句柄:hDevice = CreateFile("\\\\.\\OMNIPORT3", GENERIC_READ | GENERIC_WRITE,FILE_SHARE_READ, NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL ,NULL);文件路径名的前缀“\\.\”告诉系统本调用希望打开一个设备。这个设备必须有一个符号链,以便应用程序能够打开它。有关细节查看有关Kdevice和CreateLink的内容。在上述调用中第一个参数中前缀后的部分就是这个符号链的名字。注意:CreatFile中的第一个参数不是Windows 98/2000中驱动程序(.sys文件)的路径。是到设备对象的符号链。如果使用DriverWizard产生驱动程序,它通常使用类KunitizedName来构成设备的符号链。这意味着符号链名有一个附加的数字,通常是0。例如:如果链接名称的主干是L“TestDevice”那么在CreateFile中的串就该是“\\\\.\\TestDevice0”。如果应用程序需要被覆盖的I/O,第六个参数(Flags)必须或上FILE_FLAG_OVERLAPPED。 使用一个输出接口打开句柄用这种方式打开一个句柄会稍微麻烦一些。DriverWorks库提供两个助手类来使获得对该接口的访问容易一些,这两个类是CDeviceInterface, 和 CdeviceInterfaceClass。CdeviceInterfaceClass类封装了一个设备信息集,该信息集包含了特殊类中的所有设备接口信息。应用程序能有用CdeviceInterfaceClass类的一个实例来获得一个或更多的CdeviceInterface类的实例。CdeviceInterface类是一个单一设备接口的抽象。它的成员函数DevicePath()返回一个路径名的指针,该指针可以在CreateFile中使用来打开设备。下面用一个小例子来显示这些类最基本的使用方法:extern GUID TestGuid;HANDLE OpenByInterface( GUID* pClassGuid, DWORD instance, PDWORD pError){ CDeviceInterfaceClass DevClass(pClassGuid, pError); if (*pError != ERROR_SUCCESS) return INVALID_HANDLE_VALUE; CDeviceInterface DevInterface(&DevClass, instance, pError); if (*pError != ERROR_SUCCESS) return INVALID_HANDLE_VALUE; cout << "The device path is " << DevInterface.DevicePath() << endl; HANDLE hDev; hDev = CreateFile( DevInterface.DevicePath(), GENERIC_READ | GENERIC_WRITE, FILE_SHARE_READ | FILE_SHARE_WRITE, NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL ); if (hDev == INVALID_HANDLE_VALUE) *pError = GetLastError(); return hDev;} 在设备中执行I/O操作一旦应用程序获得一个有效的设备句柄,它就能使用Win32 APIs来产生到设备对象的IRPs。下面的表显示了这种对应关系。Win32 API DRIVER_FUNCTION_xxxIRP_MJ_xxx KDevice subclass member function CreateFile CREATE Create ReadFile READ Read WriteFile WRITE Write DeviceIoControl DEVICE_CONTROL DeviceControl CloseHandle CLOSECLEANUP CloseCleanUp 需要解释一下设备类成员的Close和CleanUp:CreateFile使内核为设备创建一个新的文件对象。这使得多个句柄可以映射同一个文件对象。当这个文件对象的最后一个用户级句柄被撤销后,I/O管理器调用CleanUp。当没有任何用户级和核心级的对文件对象的访问的时候,I/O管理器调用Close。如果被打开的设备不支持指定的功能,则调用相应的Win32将引起错误(无效功能)。以前为Windows95编写的VxD的应用程序代码中可能会在打开设备的时候使用FILE_FLAG_DELETE_ON_CLOSE属性。在Windows NT/2000中,建议不要使用这个属性,因为它将导致没有特权的用户企图打开这个设备,这是不可能成功的。I/O管理器将ReadFile和WriteFile的buff参数转换成IRP域的方法依赖于设备对象的属性。当设备设置DO_DIRECT_IO标志,I/O管理器将buff锁住在存储器中,并且创建了一个存储在IRP中的MDL域。一个设备可以通过调用Kirp::Mdl来存取MDL。当设备设置DO_BUFFERED_IO标志,设备对象分别通过KIrp::BufferedReadDest或 KIrp::BufferedWriteSource为读或写操作获得buff地址。当设备不设置DO_BUFFERED_IO标志也不设置DO_DIRECT_IO,内核设置IRP 的UserBuffer域来对应ReadFile或WriteFile中的buff参数。然而,存储区并没有被锁住而且地址只对调用进程有效。驱动程序可以使用KIrp::UserBuffer来存取IRP域。对于DeviceIoControl调用,buffer参数的转换依赖于特殊的I/O控制代码,它不在设备对象的特性中。宏CTL_CODE(在winioctl.h中定义)用来构造控制代码。这个宏的其中一个参数指明缓冲方法是METHOD_BUFFERED, METHOD_IN_DIRECT, METHOD_OUT_DIRECT, 或METHOD_NEITHER。下面的表显示了这些方法和与之对应的能获得输入缓冲与输出缓冲的KIrp中的成员函数:Method Input Buffer Parameter Output Buffer Parameter METHOD_BUFFERED KIrp::IoctlBuffer KIrp::IoctlBuffer METHOD_IN_DIRECT KIrp::IoctlBuffer KIrp::Mdl METHOD_OUT_DIRECT KIrp::IoctlBuffer KIrp::Mdl METHOD_NEITHER KIrp::IoctlType3InputBuffer KIrp::UserBuffer 如果控制代码指明METHOD_BUFFERED,系统分配一个单一的缓冲来作为输入与输出。驱动程序必须在向输出缓冲放数据之前拷贝输入数据。驱动程序通过调用KIrp::IoctlBuffer获得缓冲地址。在完成时,I/O管理器从系统缓冲拷贝数据到提供给Ring 3级调用者使用的缓冲中。驱动程序必须在结束前存储拷贝到IRP的Information成员中的数据个数。如果控制代码不指明METHOD_IN_DIRECT或METHOD_OUT_DIRECT,则DeviceIoControl的参数呈现不同的含义。参数InputBuffer被拷贝到一个系统缓冲,这个缓冲驱动程序可以通过调用KIrp::IoctlBuffer。参数OutputBuffer被映射到KMemory对象,驱动程序对这个对象的访问通过调用KIrp::Mdl来实现。对于METHOD_OUT_DIRECT,调用者必须有对缓冲的写访问权限。注意,对METHOD_NEITHER,内核只提供虚拟地址;它不会做映射来配置缓冲。虚拟地址只对调用进程有效。这里是一个用METHOD_BUFFERED的例子:首先,使用宏CTL_CODE来定义一个IOCTL代码:#define IOCTL_MYDEV_GET_FIRMWARE_REV \CTL_CODE (FILE_DEVICE_UNKNOWN,0,METHOD_BUFFERED,FILE_ANY_ACCESS)现在使用一个DeviceIoControl调用:BOOLEAN b;CHAR FirmwareRev[60];ULONG FirmwareRevSize;b = DeviceIoControl(hDevice, IOCTL_MYDEV_GET_VERSION_STRING, NULL, // no input 注意,这里放的是包含有执行操作命令的字符串指针 0, FirmwareRev, //这里是output串指针,存放从驱动程序中返回的字符串。sizeof(FirmwareRev),& FirmwareRevSize, NULL // not overlapped I/O );如果输出缓冲足够大,设备拷贝串到里面并将拷贝的资结束设置到FirmwareRevSize中。在驱动程序中,代码看起来如下所示:const char* FIRMWARE_REV = "FW 16.33 v5";NTSTATUS MyDevice::DeviceControl( KIrp I ){ ULONG fwLength=0; switch ( I.IoctlCode() ) { case IOCTL_MYDEV_GET_FIRMWARE_REV: fwLength = strlen(FIRMWARE_REV)+1; if (I.IoctlOutputBufferSize() >= fwLength) { strcpy((PCHAR)I.IoctlBuffer(),FIRMWARE_REV); I.Information() = fwLength; return I.Complete(STATUS_SUCCESS); } else { } case . . . } }
上传时间: 2013-10-17
上传用户:gai928943
针对OFDM技术中的载波频率同步问题,分析了载波频率偏差对OFDM系统造成的影响,总结了基于IEEE802.11标准的三种常见的频偏估计算法:基于循环前缀的最大似然算法、基于训练序列的时域相关算法和基于导频的频域相关算法,提出一种基于训练序列和导频的联合载波频偏估计算法。性能仿真结果表明,该联合估计算法在估计范围和估计精度上具有明显的优势,适合实际工程应用。
上传时间: 2013-11-07
上传用户:leesuper
练习程序,问题如下:进行高精度整数的加、减、乘运算。输入两个十进制大整数M和N(M、N最长可达50位),计算运算结果并输出。【输入形式】标准输入上依次分行输入以下内容:1.第一行输入第一个大整数M。M可能带有负号,后面是最长可达50位的数字序列。2.第二行只有一个字符,可以是“+”、“-”、“*”,分别代表加、减、乘三种运算符。3. 第三行输入大整数N,格式与M相同M、N均不带有前缀的多余的0【输出形式】在标准输出上打印运算结果,输出一行字符序列,是大整数M和N和运算结果。如果该运算结果是正数,则直接输出各位数字序列;如果是负数,则首先要输出负号。各位数字紧密输出,不带有前缀的多余的0。
标签: 程序
上传时间: 2015-03-07
上传用户:ommshaggar
1. 编写一个C程序作为Linux内核的shell命令行解释程序。Shell程序应该使用与Bource shell相同的方式运行程序。 2. 增加功能以使用户可以使用"&"操作符作为命令的结束符。一个以"&"结尾的命令应该与shell并发执行。 3. 增加功能以使用户可以使用"<"和">"作为文件名前缀来重定向stdin和stdout描述符。同样,允许用户使用管道操作符" "来同时执行两个进程,并把第一个进程的stdout重定向为第二个进程的stdin。
上传时间: 2014-01-06
上传用户:youmo81
由于简单模式匹配算法在一次字符比较失败后,简单的把模式串位置向前移动一个字符位置,这样就丢掉了前面字符匹配中得到的信息,效率差。所以就需要一种无回溯的算法来提高效率,这里使用KMP(Knuth-Morris-Pratt)算法。模式串前面的连续片断部分称“前缀模式”,前缀模式在模式串后部重复出现的情况可以用来避免重复进行已经做过的检查,这是KMP算法中的一个重要概念。
上传时间: 2015-03-21
上传用户:lizhen9880
自创的算法,输入表达式,建立二叉树的程序,然后输出前缀中缀后缀表示法,利用的对表达式的分割与递归实现输入,同时这也是一个完整的波兰式转换程序,相当稳健
标签: 算法
上传时间: 2015-04-16
上传用户:hwl453472107
AOFDM系统matlab仿真程序,包括映射、fft/ifft,加去循环前缀,信道估计等关键模块
上传时间: 2015-06-30
上传用户:love_stanford
这是一个表达式程序,主要用以实现从前缀表达式到后缀表达式的转换功能
上传时间: 2013-12-10
上传用户:hjshhyy
基于MATLAB的OFDM系统仿真及性能分析的一篇论文。内含matlab仿真程序,有循环前缀,信道估计。
上传时间: 2015-11-02
上传用户:dreamboy36