单片机外接共阳数码管倒计时电路,用于测试共阳数码管电路仿真实现,同时对单片机IO口功能实现检测功能。
上传时间: 2017-09-19
上传用户:cursor
1、本课题任务如下:设计一个具有特定功能的电子钟。该电子钟上电或按键复位后能自动显示系统提示符"P.",进入时钟准备状态;第一次按电子钟启动/调整键,电子钟从0时0分0秒开始运行,进入时钟运行状态;再次按电子钟启动/调整键,则电子钟进入时钟调整状态,此时可利用各调整键调整时间,调整结束后可按启动/调整键再次进入时钟运行状态。2、本课题要求如下:(1)在AT89S51的PO口和P2口外接由六个LED数码管(LED5~LEDO)构成的显示器,用PO口作LED的段码输出口(PO.0~P0.7对应于LED的a-dp),P2.5-P2.0作LED的位控输出线(P2.5~P2.0对应于LED5~LEDO),P1口外接四个按键A、B,C.D(对应于P1.0~P1.3).(2)、利用六个LED显示当前时间。(3)、四个按键的功能:A键用于电子钟启动/调整;B键用于调时,范围0-23,0为24点,每按一次时加1;C键用于调分,范围0-59,0为60分,每按一次分加1:D键用于调秒,范围0-59,0为60秒,每按一次秒加1.(4)、单片机采用AT89S51,fasc-12MHz(5)、电子钟供电电源电路的设计。
上传时间: 2022-06-19
上传用户:aben
1. 数码管显示原理 数码的显示方式一般有三种: 第一种是字型重叠式; 第二种是分段式; 第三种是点阵式。 目前以分段式应用最为普遍,主要器件是七段发光二极管(LED)显示器。它可分为两种, 一是共阳极显示器(发光二极管的阳极都接在一个公共点上) ,另一是共阴极显示器(发光 二极管的阳极都接在一个公共点上,使用时公共点接地) 。 EXCD-1 开发板使用的数码管为四位共阴极数码管, 每一位的共阴极 7 段数码管由 7个 发光 LED 组成,呈“ ”字状,7 个发光 LED 的阴极连接在一起,阳极分别连接至 FPGA 相应引脚。SEG_SEL1、SEG_SEL2、SEG_SEL3 和 SEG_SEL4 为四位 7 段数码管的位选择 端。当其值为“1”时,相应的 7 段数码管被选通。当输入到 7 段数码管 SEG_A~ SEG_G和 EG_DP 管脚的数据为高电平时,该管脚对应的段变亮,当输入到 7 段数码管 SEG_A~ EG_G和 SEG_DP 管脚的数据为低电平时,该管脚对应的段变灭。
上传时间: 2013-05-23
上传用户:66666
共阳极、共阴极数码管的引脚图
上传时间: 2013-12-20
上传用户:asaqq
含原理图+电路图+程序的波形发生器:在工作中,我们常常会用到波形发生器,它是使用频度很高的电子仪器。现在的波形发生器都采用单片机来构成。单片机波形发生器是以单片机核心,配相应的外围电路和功能软件,能实现各种波形发生的应用系统,它由硬件部分和软件部分组成,硬件是系统的基础,软件则是在硬件的基础上,对其合理的调配和使用,从而完成波形发生的任务。 波形发生器的技术指标:(1) 波形类型:方型、正弦波、三角波、锯齿波;(2) 幅值电压:1V、2V、3V、4V、5V;(3) 频率值:10HZ、20HZ、50HZ、100HZ、200HZ、500HZ、1KHZ;(4) 输出极性:双极性操作设计1、 机器通电后,系统进行初始化,LED在面板上显示6个0,表示系统处于初始状态,等待用户输入设置命令,此时,无任何波形信号输出。2、 用户按下“F”、“V”、“W”,可以分别进入频率,幅值波形设置,使系统进入设置状态,相应的数码管显示“一”,此时,按其它键,无效;3、 在进入某一设置状态后,输入0~9等数字键,(数字键仅在设置状态时,有效)为欲输出的波形设置相应参数,LED将参数显示在面板上;4、 如果在设置中,要改变已设定的参数,可按下“CL”键,清除所有已设定参数,系统恢复初始状态,LED显示6个0,等待重新输入命令;5、 当必要的参数设定完毕后,所有参数显示于LED上,用户按下“EN”键,系统会将各波形参数传递到波形产生模块中,以便控制波形发生,实现不同频率,不同电压幅值,不同类型波形的输出;6、 用户按下“EN”键后,波形发生器开始输出满足参数的波形信号,面板上相应类型的运行指示灯闪烁,表示波形正在输出,LED显示波形类型编号,频率值、电压幅值等波形参数;7、 波形发生器在输出信号时,按下任意一个键,就停止波形信号输出,等待重新设置参数,设置过程如上所述,如果不改变参数,可按下“EN”键,继续输出原波形信号;8、 要停止波形发生器的使用,可按下复位按钮,将系统复位,然后关闭电源。硬件组成部分通过综合比较,决定选用获得广泛应用,性能价格高的常用芯片来构成硬件电路。单片机采用MCS-51系列的89C51(一块),74LS244和74LS373(各一块),反相驱动器 ULN2803A(一块),运算放大器 LM324(一块) 波形发生器的硬件电路由单片机、键盘显示器接口电路、波形转换(D/ A)电路和电源线路等四部分构成。1.单片机电路功能:形成扫描码,键值识别,键功能处理,完成参数设置;形成显示段码,向LED显示接口电路输出;产生定时中断;形成波形的数字编码,并输出到D/A接口电路;如电路原理图所示: 89C51的P0口和P2口作为扩展I/O口,与8255、0832、74LS373相连接,可寻址片外的寄存器。单片机寻址外设,采用存储器映像方式,外部接口芯片与内部存储器统一编址,89C51提供16根地址线P0(分时复用)和P2,P2口提供高8位地址线,P0口提供低8位地址线。P0口同时还要负责与8255,0832的数据传递。P2.7是8255的片选信号,P2.6是0832(1)的片选,P2.5是0832(2)的片选,低电平有效,P0.0、P0.1经过74LS373锁存后,送到8255的A1、A2作,片内A口,B口,C口,控制口等寄存器的字选。89C51的P1口的低4位连接4只发光三极管,作为波形类型指示灯,表示正在输出的波形是什么类型。单片机89C51内部有两个定时器/计数器,在波形发生器中使用T0作为中断源。不同的频率值对应不同的定时初值,定时器的溢出信号作为中断请求。控制定时器中断的特殊功能寄存器设置如下:定时控制寄存器TCON=(00010000)工作方式选择寄存器(TMOD)=(00000000)中断允许控制寄存器(IE)=(10000010)2、键盘显示器接口电路功能:驱动6位数码管动态显示; 提供响应界面; 扫面键盘; 提供输入按键。由并口芯片8255,锁存器74LS273,74LS244,反向驱动器ULN2803A,6位共阴极数码管(LED)和4×4行列式键盘组成。8255的C口作为键盘的I/O接口,C口的低4位输出到扫描码,高4位作为输入行状态,按键的分布如图所示。8255的A口作为LED段码输出口,与74LS244相连接,B口作为LED的位选信号输出口,与ULN2803A相连接。8255内部的4个寄存器地址分配如下:控制口:7FFFH , A口:7FFFCH , B口:7FFDH , C口:7FFEH 3、D/A电路功能:将波形样值的数字编码转换成模拟值;完成单极性向双极性的波形输出;构成由两片0832和一块LM324运放组成。0832(1)是参考电压提供者,单片机向0832(1)内的锁存器送数字编码,不同的编码会产生不同的输出值,在本发生器中,可输出1V、2V、3V、4V、5V等五个模拟值,这些值作为0832(2)的参考电压,使0832(2)输出波形信号时,其幅度是可调的。0832(2)用于产生各种波形信号,单片机在波形产生程序的控制下,生成波形样值编码,并送到0832(2)中的锁存器,经过D/A转换,得到波形的模拟样值点,假如N个点就构成波形的一个周期,那么0832(2)输出N个样值点后,样值点形成运动轨迹,就是波形信号的一个周期。重复输出N个点后,由此成第二个周期,第三个周期……。这样0832(2)就能连续的输出周期变化的波形信号。运放A1是直流放大器,运放A2是单极性电压放大器,运放A3是双极性驱动放大器,使波形信号能带得起负载。地址分配:0832(1):DFFFH ,0832(2):BFFFH4、电源电路:功能:为波形发生器提供直流能量;构成由变压器、整流硅堆,稳压块7805组成。220V的交流电,经过开关,保险管(1.5A/250V),到变压器降压,由220V降为10V,通过硅堆将交流电变成直流电,对于谐波,用4700μF的电解电容给予滤除。为保证直流电压稳定,使用7805进行稳压。最后,+5V电源配送到各用电负载。
上传时间: 2013-11-08
上传用户:685
《现代微机原理与接口技术》实验指导书 TPC-H实验台C语言版 1.实验台结构1)I / O 地址译码电路如上图1所示地址空间280H~2BFH共分8条译码输出线:Y0~Y7 其地址分别是280H~287H、288H~28FH、290H~297H、298H~29FH、2A0H~2A7H、2A8H~2AFH、2B0H~2B7H、2B8H~2BFH,8根译码输出线在实验台I/O地址处分别由自锁紧插孔引出供实验选用(见图2)。 2) 总线插孔采用“自锁紧”插座在标有“总线”区引出数据总线D7~D0;地址总线A9~A0,读、写信号IOR、IOW;中断请求信号IRQ ;DMA请求信号DRQ1;DMA响应信号DACK1 及AEN信号,供学生搭试各种接口实验电路使用。3) 时钟电路如图-3所示可以输出1MHZ 2MHZ两种信号供A/D转换器定时器/计数器串行接口实验使用。图34) 逻辑电平开关电路如图-4所示实验台右下方设有8个开关K7~K0,开关拨到“1”位置时开关断开,输出高电平。向下打到“0”位置时开关接通,输出低电平。电路中串接了保护电阻使接口电路不直接同+5V 、GND相连,可有效地防止因误操作误编程损坏集成电路现象。图 4 图 55) L E D 显示电路如图-5所示实验台上设有8个发光二极管及相关驱动电路(输入端L7~L0),当输入信号为“1” 时发光,为“0”时灭6) 七段数码管显示电路如图-6所示实验台上设有两个共阴极七段数码管及驱动电路,段码为同相驱动器,位码为反相驱动器。从段码与位码的驱动器输入端(段码输入端a、b、c、d、e、f、g、dp,位码输入端s1、 s2)输入不同的代码即可显示不同数字或符号。
上传时间: 2013-11-22
上传用户:sssnaxie
4位八段数码管的十进制加计数仿真实验,程序采用汇编语言编写。此程序在仿真软件上与EDN-51实验板上均通过。仿真图中的数码管位驱动采用74HC04,如按EDN-51板上用想同的PNP三极管驱动在仿真软件上则无法正常显示。程序共分5块,STAR0为数据初始化,STAR2为计数子程序,STAR3为4位数码管动态显示子程序,STAR4为按键扫描子程序,STS00是延时子程序。由于EDN-51实验板上没装BCD译码器,所以编写程序比较烦琐。 程序如下: ORG 0000H LJMP STAR0 ;转程序 SRAR0ORG 0200H ;程序地址 0200HSTAR0: CLR 00 ;位 00 清 0 MOV P1,#0FFH ;#0FFH-->P1 MOV P2,#0FH ;#0FH-->P2 MOV P0,#0FFH ;#0FFH-->P0 MOV 30H,#00H ;#00H-->30H MOV 31H,#00H ;#00H-->30H MOV 32H,#00H ;#00H-->30H MOV 33H,#00H ;#00H-->30H LJMP STAR3 ;转程序 SRAR3STAR2: MOV A,#0AH ;#0AH-->A INC 30H ;30H+1 CJNE A,30H,STJE ;30H 与 A 比较,不等转移 STJE MOV 30H,#00H ;#00H-->30H INC 31H ;31H+1 CJNE A,31H,STJE ;31H 与 A 比较,不等转移 STJE MOV 31H,#00H ;#00H-->31H INC 32H ;32H+1 CJNE A,32H,STJE ;32H 与 A 比较,不等转移 STJE MOV 32H,#00H ;#00H-->32H INC 33H ;33H+1 CJNE A,33H,STJE ;33H 与 A 比较,不等转移 STJE MOV 33H,#00H ;#00H-->33H MOV 32H,#00H ;#00H-->32H MOV 31H,#00H ;#00H-->31H MOV 30H,#00H ;#00H-->30HSTJE: RET ;子程序调用返回STAR3: MOV R0,#30H ;#30H-->R0 MOV R6,#0F7H ;#0F7H-->R6SMG0: MOV P1,#0FFH ;#0FFH-->P1 MOV A,R6 ;R6-->A MOV P1,A ;A-->P1 RR A ;A向右移一位 MOV R6,A ;A-->R6 MOV A,@R0 ;@R0-->A ADD A,#04H ;#04H-->A MOVC A,@A+PC ;A+PC--> MOV P0,A ;A-->P0 AJMP SMG1 ;转程序 SMG1SDATA: DB 0C0H,0F9H,0A4H,0B0H,99H DB 92H,82H,0F8H,80H,90H SMG1: LCALL STAR4 ;转子程序 SRAR4 LCALL STS00 ;转子程序 STS00 INC R0 ;R0+1 CJNE R6,#07FH,SMG0 ;#07FH 与 R6 比较,不等转移 SMG0 AJMP STAR3 ;转程序 SRAR3STAR4: JNB P2.0,ST1 ;P2.0=0 转 ST1 CLR 00 ;位 00 清 0 SJMP ST3 ;转ST3ST1: JNB 00,ST2 ;位 00=0 转 ST2 SJMP ST3 ;转 ST3ST2: LCALL STAR2 ;调子程序 STAR2 SETB 00 ;位 00 置 1ST3: RET ;子程序调用返回ORG 0100H ;地址 0100HSTS00: MOV 60H,#003H ;#003H-->60H (211)DE001: MOV 61H,#0FFH ;#0FFH-->61H (255)DE002: DJNZ 61H,DE002 ;61H 减 1 不等于 0 转 DE002 DJNZ 60H,DE001 ;60H 减 1 不等于 0 转 DE001 RET ;子程序调用返回 END ;结束 上次的程序共有293句,经小组成员建议,本人经几天的研究写了下面的这个程序,现在的程序用了63句,精简了230句。功能没有减。如谁有更简练的程序,请发上来,大家一起学习。 4位八段数码管的十进制加计数仿真实验(含电路图和仿真文件)
上传时间: 2013-10-11
上传用户:sssl
此程序是有关红外的程序 mcu用啊他89c52 采用外部中断0接一体化红外接受头038 (就是影碟机上拆得的) P0 P2接数码管 P0数据 P2位选 能显示遥控器的系统码及其反码 数据及其反码 (共8位) 实际调试成功 工作稳定 测试红外发光二极管的方法 用2v电源 接红外发光二极管 在摄像头下能看到淡紫偏白的光
上传时间: 2015-11-21
上传用户:songnanhua
单片机RS232/RS485串行发送实验(双机通讯)。 实验步骤: (1),准备两台598K实验机,确定1号机为发送,2号机为接收; (2),当作RS232接口实验时,1号机和2号机的P3.0和P3.1交叉相连,且两机共地; (3),当作RS485接口实验时,1号机和2号机的A、B作对应连接,同时1,2号机的R/TEN接P1.0, P3.0接R0, P3.1接DI。 (4),先运行2号机,键入[27]-->[EV]使2号机处于接收状态P。,后运行1号机[26]-->[EV]使1号机处于发送状态,P。会闪烁,在1号机键盘上按动数字键,在2号机的数码管上应显示对应的数字键值。
上传时间: 2015-11-27
上传用户:thinode
7段数码是纯组合电路,通常的小规模专用IC,如74或4000系列的器件只能作十进制BCD码译码,然而数字系统中的数据处理和运算都是2进制的,所以输出表达都是16进制的,为了满足16进制数的译码显示,最方便的方法就是利用VHDL译码程序在FPGA或CPLD中实现。本项实验很容易实现这一目的。例6-1作为7段BCD码译码器的设计,输出信号LED7S的7位分别接如图6-1数码管的7个段,高位在左,低位在右。例如当LED7S输出为 "1101101" 时,数码管的7个段:g、f、e、d、c、b、a分别接1、1、0、1、1、0、1,接有高电平的段发亮,于是数码管显示“5”。
上传时间: 2014-01-08
上传用户:wff