虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

倍率

  • 离散傅里叶变换,(DFT)Direct Fouriet Tr

    离散傅里叶变换,(DFT)Direct Fouriet Transformer(PPT课件) 一、序列分类对一个序列长度未加以任何限制,则一个序列可分为:    无限长序列:n=-∞~∞或n=0~∞或n=-∞~ 0    有限长序列:0≤n≤N-1有限长序列在数字信号处理是很重要的一种序列。由于计算机容量的限制,只能对过程进行逐段分析。二、DFT引入由于有限长序列,引入DFT(离散付里叶变换)。DFT它是反映了“有限长”这一特点的一种有用工具。DFT变换除了作为有限长序列的一种付里叶表示,在理论上重要之外,而且由于存在着计算机DFT的有效快速算法--FFT,因而使离散付里叶变换(DFT)得以实现,它使DFT在各种数字信号处理的算法中起着核心的作用。三、本章主要讨论 离散付里叶变换的推导离散付里叶变换的有关性质离散付里叶变换逼近连续时间信号的问题第二节 付里叶变换的几种形式傅 里 叶 变 换 :  建 立 以 时 间 t 为 自 变 量 的 “ 信 号 ”   与 以 频 率 f为 自 变 量 的 “ 频 率 函 数 ”(频谱) 之 间 的 某 种 变 换 关 系 . 所 以 “ 时 间 ” 或 “ 频 率 ” 取 连 续 还 是 离 散 值 , 就 形 成 各 种 不 同 形 式 的 傅 里 叶 变 换 对 。, 在 深 入 讨 论 离 散 傅 里 叶 变 换 D F T 之 前 , 先 概 述 四种 不 同 形式 的 傅 里 叶 变 换 对 . 一、四种不同傅里叶变换对傅 里 叶 级 数(FS):连 续 时 间 , 离 散 频 率 的 傅 里 叶 变 换 。连 续 傅 里 叶 变 换(FT):连 续 时 间 , 连 续 频 率 的 傅 里 叶 变 换 。序 列 的 傅 里 叶 变 换(DTFT):离 散 时 间 , 连 续 频 率 的 傅 里 叶 变 换.离 散 傅 里 叶 变 换(DFT):离 散 时 间 , 离 散 频 率 的 傅 里 叶 变 换1.傅 里 叶 级 数(FS)周期连续时间信号          非周期离散频谱密度函数。 周期为Tp的周期性连续时间函数 x(t) 可展成傅里叶级数X(jkΩ0)  ,是离散非周期性频谱 , 表 示为:例子通过以下 变 换 对  可 以 看 出 时 域 的 连 续 函 数 造 成 频 域 是 非 周 期 的 频 谱 函 数 , 而 频 域 的 离 散 频 谱 就 与 时 域 的 周 期 时 间 函 数 对 应 . (频域采样,时域周期延 拓)2.连 续 傅 里 叶 变 换(FT)非周期连续时间信号通过连续付里叶变换(FT)得到非周期连续频谱密度函数。

    标签: Fouriet Direct DFT Tr

    上传时间: 2013-11-19

    上传用户:fujiura

  • 用单片机制作多功能莫尔斯码电路

    用单片机制作多功能莫尔斯码电路:用单片机制作多功能莫尔斯码电路莫尔斯电码通信有着悠久的历史,尽管它已被现代通信方式所取代,但在业余无线电通信和特殊的专业场合仍具有重要的地位,这是因为等幅电码通信的抗干扰能力是其它任何一种通信方式都无法相比的。在短波波段用几瓦的功率即可进行国际间的通信,收发射设备简单易制成本低廉,所以深受业余无线电爱好者的喜爱,是业余无线电高手必备的技能。要想熟练掌握莫尔斯电码的收发技术除了持之以恒的毅力外,还需要相关的设备。设计本电路的目的就是给爱好者提供一个实用和训练的工具。  一、功能简介    本电路可以配合自动键体和手动键体,产生莫尔斯码控制信号,设有16种速度,从初学者到操作高手都能适用。监听音调也有16种,均可以通过功能键进行选择。可以按程序中设定好的呼号自动呼叫,设有听抄练习功能,听抄练习有短码和混合码两种模式,分别对10个数字和常用的38个混合码模拟随机取样,产生分组报码,供爱好者提高抄收水平之用,速度低4档的听抄练习是专为初学者所设,内容是时间间隔较长的单字符。设有PTT开关键,可以决定是否控制发射机工作,不需要反复通断控制线。无论当前处于呼叫状态还是听抄状态只要电键接点接通则自动转到人工发报程序。4分钟内不使用电路将自动关闭电源,只有按复位键才能重新开始工作。先按住听抄练习键复位则进入短码练习状态,其它功能不变。从开机到自动关机执行每个功能都有不同的莫尔斯码提示音。本电路具有较强的抗高低频干扰的能力和使用方便的大电流开关接口,以适应不同的发射设备。    二、硬件电路原理硬件电路如图1所示。设计电路的目的在于方便实用,以免在紧张的操作中失误,所以除了听抄练习键外其它键没有定义复用功能。各键的作用在图中已经标出。PTT控制在每次复位时处于关闭状态,每按动一次PTT功能键则改变一次状态,这样可以使用软件开关控制发射。 PTT处于控制状态时发光二极管随控制信号闪亮。考虑到自制设备及淘汰军用设备与高档设备控制电流的不同,PTT开关管采用了2SC2073,可以承受500mA的电流,同时还增加了无极性PTT开关电路,无论外部被控制的端口直流极性如何加到VT3的极性始终不变,供有兴趣的爱好者实验。应该注意,如果被控制的负载是感性,则电感两端必须并联续流二极管,除自制设备外成品机在这方面一般没有什么问题。手动键只有一个接点,接通后产生连续的音频和发射控制信号。在本电路中手动键的输入端是P1.5 ,程序不断检测P1.5电平,当按键按下时P1.5电平为0,程序转入手动键子程序。 自动键的接点分别接到P1.3和P1.4 ,同样当程序检测到有接点闭合时便自动产生“点”或“划”。音频信号从P输出,经VT1放大后推动扬声器发音。单片机的I/O口在输入状态下阻抗较高,容易受到高低频信号干扰,所以在每个输入端口和三极管的be端并联电阻和高频旁路电容,确保在较长的电键连线和大功率发射时电路工作稳定。图2是印刷电路版图,尺寸为110mmX85mm,扬声器用粘合剂直接粘接在电路版有铜箔的面。    三、软件设计方法  “点”时间长度是莫尔斯电码中的基本时间单位。按规定“划”的时间长度不小于三个“点”,同字符中“点”与“划”的间隔不小于一个“点”,字符之间不小于一个“划”,词与词之间不应小于五个“点”。在本程序中用条件转移指令来产生“点”时间长度。通过速度功能键功可以设置16种延时参数。用T0中断产生监听音频信号,并将中断设为优先级,保证在听觉上纯正悦耳。T1用于自动关机计时,如果不使用任何功能四分钟后将向PCON 位写1,单片机进入休眠状态,此时耗电量仅有几个微安。自动键的“点”或“划”以及手动键的连续发音都是子程序的反复调用。P1.2对地短接时自动呼叫可设定为另一内容。为了便于熟悉汇编语言的读者对发音内容进行修改,这里介绍发音字符的编码方法。莫尔斯码的信息与计算机中二进制恰好相同,我们可以用0表示“点”,用1表示“划”。提示音、自动呼叫、听抄内容等字符是预先按一定编码方式存储在程序中的常数。每个字符的莫尔斯码一般是由1至6位“点”、“划”组成,也就是发音次数最多6次。程序中每个字符占用1个字节,字符时间间隔不占用字节,但更长的延时或发音结束信息占用一个字节。我们用字节的低三位表示字节的性质,对于5次及5次以下发音的字符我们用存储器的高5位存储发音信息,发音顺序由高位至低位,用低3位存储发音次数,发音时将数据送入累加器A,先得到发音次数,然后使A左环移,对E0进行位寻址,判断是发“点”还是“划”,环移次数由发音次数决定。对于6次发音的字符不能完全按照上述编码规则,否则会出现信息重叠,如果是6次发音且最后一次是“划”我们把发音次数定义为111B,因为这时第6次位寻址得到的是1。如果第6次发音是“点”,那么这个字符的低三位定义为000B。字符间隔时间由程序自动产生,更长的时间隔或结束标志由字节低三位110B来定义,高半字节表示字符间隔的倍数,例如26H表示再加两倍时间间隔。如果字节为06H则表示读字符程序结束,返回主程序。更详细的内容不再赘述,读者可阅读源程序。四、使用注意事项手动键的操作难度相对大一些,时间节拍全由人掌握,其特点是发出的电码带有“人情味”。自动键的“点”、“划”靠电路产生,发音标准,容易操作,而且可以达到相当快的速度,长时间工作也不易疲劳。在干扰较大、信号微弱的条件下自动键码的辨别程度好于手动键码。初学者初次使用手动键练习发报要有老师指导,且不可我行我素,一旦养成不正确的手法则很难纠正。在电台上时常听到一些让对方难以抄收的电码,这可能会使对方反感而拒绝回答。使用自动键也应在一定的听抄基础上再去练习。在暂时找不老师的情况下可多练习听力,这对于今后能够发出标准正确的电码非常有益。

    标签: 用单片机 多功能 莫尔斯 电路

    上传时间: 2013-10-31

    上传用户:sdq_123

  • 单片机音乐中音调和节拍的确定方法

    单片机音乐中音调和节拍的确定方法:调号-音乐上指用以确定乐曲主音高度的符号。很明显一个八度就有12个半音。A、B、C、D、E、F、G。经过声学家的研究,全世界都用这些字母来表示固定的音高。比如,A这个音,标准的音高为每秒钟振动440周。 升C调:1=#C,也就是降D调:1=BD;277(频率)升D调:1=#D,也就是降E调:1=BE;311升F调:1=#F,也就是降G调:1=BG;369升G调:1=#G,也就是降A调:1=BA;415升A调:1=#A,也就是降B调:1=BB。466,C 262   #C277   D 294   #D(bE)311  E 330   F 349   #F369   G 392  #G415A 440.    #A466    B 494 所谓1=A,就是说,这首歌曲的“导”要唱得同A一样高,人们也把这首歌曲叫做A调歌曲,或叫“唱A调”。1=C,就是说,这首歌曲的“导”要唱得同C一样高,或者说“这歌曲唱C调”。同样是“导”,不同的调唱起来的高低是不一样的。各调的对应的标准频率为: 单片机演奏音乐时音调和节拍的确定方法 经常看到一些刚学单片机的朋友对单片机演奏音乐比较有兴趣,本人也曾是这样。在此,本人将就这方面的知识做一些简介,但愿能对单片机演奏音乐比较有兴趣而又不知其解的朋友能有所启迪。 一般说来,单片机演奏音乐基本都是单音频率,它不包含相应幅度的谐波频率,也就是说不能象电子琴那样能奏出多种音色的声音。因此单片机奏乐只需弄清楚两个概念即可,也就是“音调”和“节拍”。音调表示一个音符唱多高的频率,节拍表示一个音符唱多长的时间。 在音乐中所谓“音调”,其实就是我们常说的“音高”。在音乐中常把中央C上方的A音定为标准音高,其频率f=440Hz。当两个声音信号的频率相差一倍时,也即f2=2f1时,则称f2比f1高一个倍频程, 在音乐中1(do)与 ,2(来)与 ……正好相差一个倍频程,在音乐学中称它相差一个八度音。在一个八度音内,有12个半音。以1—i八音区为例, 12个半音是:1—#1、#1—2、2—#2、#2—3、3—4、4—#4,#4—5、5一#5、#5—6、6—#6、#6—7、7—i。这12个音阶的分度基本上是以对数关系来划分的。如果我们只要知道了这十二个音符的音高,也就是其基本音调的频率,我们就可根据倍频程的关系得到其他音符基本音调的频率。 知道了一个音符的频率后,怎样让单片机发出相应频率的声音呢?一般说来,常采用的方法就是通过单片机的定时器定时中断,将单片机上对应蜂鸣器的I/O口来回取反,或者说来回清零,置位,从而让蜂鸣器发出声音,为了让单片机发出不同频率的声音,我们只需将定时器予置不同的定时值就可实现。那么怎样确定一个频率所对应的定时器的定时值呢?以标准音高A为例:   A的频率f = 440 Hz,其对应的周期为:T = 1/ f = 1/440 =2272μs 由上图可知,单片机上对应蜂鸣器的I/O口来回取反的时间应为:t = T/2 = 2272/2 = 1136μs这个时间t也就是单片机上定时器应有的中断触发时间。一般情况下,单片机奏乐时,其定时器为工作方式1,它以振荡器的十二分频信号为计数脉冲。设振荡器频率为f0,则定时器的予置初值由下式来确定:    t = 12 *(TALL – THL)/ f0 式中TALL = 216 = 65536,THL为定时器待确定的计数初值。因此定时器的高低计数器的初值为:     TH = THL / 256 = ( TALL – t* f0/12) / 256    TL = THL % 256 = ( TALL – t* f0/12) %256  将t=1136μs代入上面两式(注意:计算时应将时间和频率的单位换算一致),即可求出标准音高A在单片机晶振频率f0=12Mhz,定时器在工作方式1下的定时器高低计数器的予置初值为 :    TH440Hz = (65536 – 1136 * 12/12) /256 = FBH    TL440Hz = (65536 – 1136 * 12/12)%256 = 90H根据上面的求解方法,我们就可求出其他音调相应的计数器的予置初值。 音符的节拍我们可以举例来说明。在一张乐谱中,我们经常会看到这样的表达式,如1=C  、1=G …… 等等,这里1=C,1=G表示乐谱的曲调,和我们前面所谈的音调有很大的关联, 、 就是用来表示节拍的。以 为例加以说明,它表示乐谱中以四分音符为节拍,每一小结有三拍。比如:      其中1 、2 为一拍,3、4、5为一拍,6为一拍共三拍。1 、2的时长为四分音符的一半,即为八分音符长,3、4的时长为八分音符的一半,即为十六分音符长,5的时长为四分音符的一半,即为八分音符长,6的时长为四分音符长。那么一拍到底该唱多长呢?一般说来,如果乐曲没有特殊说明,一拍的时长大约为400—500ms 。我们以一拍的时长为400ms为例,则当以四分音符为节拍时,四分音符的时长就为400ms,八分音符的时长就为200ms,十六分音符的时长就为100ms。可见,在单片机上控制一个音符唱多长可采用循环延时的方法来实现。首先,我们确定一个基本时长的延时程序,比如说以十六分音符的时长为基本延时时间,那么,对于一个音符,如果它为十六分音符,则只需调用一次延时程序,如果它为八分音符,则只需调用二次延时程序,如果它为四分音符,则只需调用四次延时程序,依次类推。通过上面关于一个音符音调和节拍的确定方法,我们就可以在单片机上实现演奏音乐了。具体的实现方法为:将乐谱中的每个音符的音调及节拍变换成相应的音调参数和节拍参数,将他们做成数据表格,存放在存储器中,通过程序取出一个音符的相关参数,播放该音符,该音符唱完后,接着取出下一个音符的相关参数……,如此直到播放完毕最后一个音符,根据需要也可循环不停地播放整个乐曲。另外,对于乐曲中的休止符,一般将其音调参数设为FFH,FFH,其节拍参数与其他音符的节拍参数确定方法一致,乐曲结束用节拍参数为00H来表示。下面给出部分音符(三个八度音)的频率以及以单片机晶振频率f0=12Mhz,定时器在工作方式1下的定时器高低计数器的予置初值 : C调音符  频率Hz 262 277 293 311 329 349 370 392 415 440 466 494TH/TL F88B F8F2 F95B F9B7 FA14 FA66 FAB9 FB03 FB4A FB8F FBCF FC0BC调音符 1 1# 2 2# 3 4 4# 5 5# 6 6# 7频率Hz 523 553 586 621 658 697 739 783 830 879 931 987TH/TL FC43 FC78 FCAB FCDB FD08 FD33 FD5B FD81 FDA5 FDC7 FDE7 FE05C调音符  频率Hz 1045 1106 1171 1241 1316 1393 1476 1563 1658 1755 1860 1971TH/TL FB21 FE3C FE55 FE6D FE84 FE99 FEAD FEC0 FE02 FEE3 FEF3 FF02

    标签: 单片机 音调

    上传时间: 2013-10-20

    上传用户:哈哈haha

  • 单片机外围线路设计

    当拿到一张CASE单时,首先得确定的是能用什么母体才能实现此功能,然后才能展开对外围硬件电路的设计,因此首先得了解每个母体的基本功能及特点,下面大至的介绍一下本公司常用的IC:单芯片解决方案• SN8P1900 系列–  高精度 16-Bit  模数转换器–  可编程运算放大器 (PGIA)•  信号放大低漂移: 2V•  放大倍数可编程: 1/16/64/128  倍–  升压- 稳压调节器 (Charge-Pump Regulator)•  电源输入: 2.4V ~ 5V•  稳压输出: e.g. 3.8V at SN8P1909–  内置液晶驱动电路 (LCD Driver)–  单芯片解决方案 •  耳温枪  SN8P1909 LQFP 80 Pins• 5000 解析度量测器 SN8P1908 LQFP 64 Pins•  体重计  SN8P1907 SSOP 48 Pins单芯片解决方案• SN8P1820 系列–  精确的12-Bit  模数转换器–  可编程运算放大器 (PGIA)• Gain Stage One: Low Offset 5V, Gain: 16/32/64/128• Gain Stage One: Low Offset 2mV, Gain: 1.3 ~ 2.5–  升压- 稳压调节器•  电源输入: 2.4V ~ 5V•  稳压输出: e.g. 3.8V at SN8P1829–  内置可编程运算放大电路–  内置液晶驱动电路 –  单芯片解决方案 •  电子医疗器 SN8P1829 LQFP 80 Pins 高速/低功耗/高可靠性微控制器• 最新SN8P2000 系列– SN8P2500/2600/2700 系列– 高度抗交流杂讯能力• 标准瞬间电压脉冲群测试 (EFT): IEC 1000-4-4• 杂讯直接灌入芯片电源输入端• 只需添加1颗 2.2F/50V 旁路电容• 测试指标稳超 4000V (欧规)– 高可靠性复位电路保证系统正常运行• 支持外部复位和内部上电复位• 内置1.8V 低电压侦测可靠复位电路• 内置看门狗计时器保证程序跳飞可靠复位– 高抗静电/栓锁效应能力– 芯片工作温度有所提高: -200C ~ 700C     工规芯片温度: -400C ~ 850C 高速/低功耗/高可靠性微控制器• 最新 SN8P2000 系列– SN8P2500/2600/2700 系列– 1T  精简指令级结构• 1T:  一个外部振荡周期执行一条指令•  工作速度可达16 MIPS / 16 MHz Crystal–  工作消耗电流 < 2mA at 1-MIPS/5V–  睡眠模式下消耗电流 < 1A / 5V额外功能• 高速脉宽调制输出 (PWM)– 8-Bit PWM up to 23 KHz at 12 MHz System Clock– 6-Bit PWM up to 93 KHz  at 12 MHz System Clock– 4-Bit PWM up to 375 KHz  at 12 MHz System Clock• 内置高速16 MHz RC振荡器 (SN8P2501A)• 电压变化唤醒功能• 可编程控制沿触发/中断功能– 上升沿 / 下降沿 / 双沿触发• 串行编程接口

    标签: 单片机 线路设计

    上传时间: 2013-10-21

    上传用户:jiahao131

  • 微机总线与接口标准

    3.1 总线与接口概述 3.1.1 总线和接口及其标准的概念  总线:是在模块和模块之间或设备与设备之间的一组进行互连和传输信息的信号线,信息包括指令、数据和地址。   总线标准     指芯片之间、扩展卡之间以及系统之间,通过总线进行连接和传输信息时,应该遵守的一些协议与规范。  接口标准    外设接口的规范,涉及接口信号线定义、信号传输速率、传输方向和拓扑结构,以及电气特性和机械特性等多个方面。 3.1.2 总线的分类 1) 按总线功能或信号类型划分为: 数据总线:双向三态逻辑,线宽表示了总线数据传输的能力。地址总线:单向三态逻辑,线宽决定了系统的寻址能力。控制总线:就某根来说是单向或双向。控制总线最能体现总线特点,决定总线功能的强弱和适应性。2) 按总线的层次结构分为: CPU总线:微机系统中速度最快的总线,主要在CPU内部,连接CPU内部部件,在CPU周围的小范围内也分布该总线,提供系统原始的控制和命令。局部总线:在系统总线和CPU总线之间的一级总线,提供CPU和主板器件之间以及CPU到高速外设之间的快速信息通道。系统总线:也称为I/O总线,是传统的通过总线扩展卡连接外部设备的总线。由于速度慢,其功能已经被局部总线替代。通信总线:也称为外部总线,是微机与微机,微机与外设之间进行通信的总线。3.1.3 总线的主要性能参数1.总线频率:MHz表示的工作频率,是总线速率的一个重要参数。2.总线宽度:指数据总线的位数。3.总线的数据传输率   总线的数据传输率=(总线宽度/8位)×总线频率 例:PCI总线的总线频率为33.3MHz,总线宽度为64位的情况下,总线数据传输率为266MB/s 。

    标签: 微机 总线 接口标准

    上传时间: 2013-11-17

    上传用户:shen954166632

  • 照明应用中的51LPC微控制器

    特性• 一系列方法支持不同的照明概念/原理UHP CCFL等• 快速执行标准80C51 器件的两倍• 工作范围宽2.7V~6.0V 而且在125 仍可工作• 带晶振/谐振器和RC 的用户可配置振荡器不要求外部元件• 低电流操作• 丰富的特性集包括UART和I2C 串行通讯低电压检测和上电复位• 两个比较器• 在系统可编程ISP• 专用的模拟和数字外围设备• ADC 快速PWM 和DAC特殊控制的专用外围设备• PFC 功率因素修正• 带软开关PWM 的半桥和全桥控制• 使用ADC 和比较器进行照明管理• 与几乎所有远程协议接口DALI IR RF 等• 带镇流ASIC 带DAC 或PWM 的快速控制回路• 与存储设备的I2C 接口

    标签: LPC 51 照明应用 微控制器

    上传时间: 2014-03-24

    上传用户:ming529

  • 微型计算机总线知识

    计算机部件要具有通用性,适应不同系统与不同用户的需求,设计必须模块化。计算机部件产品(模块)供应出现多元化。模块之间的联接关系要标准化,使模块具有通用性。模块设计必须基于一种大多数厂商认可的模块联接关系,即一种总线标准。总线的标准总线是一类信号线的集合是模块间传输信息的公共通道,通过它,计算机各部件间可进行各种数据和命令的传送。为使不同供应商的产品间能够互换,给用户更多的选择,总线的技术规范要标准化。总线的标准制定要经周密考虑,要有严格的规定。总线标准(技术规范)包括以下几部分:机械结构规范:模块尺寸、总线插头、总线接插件以及按装尺寸均有统一规定。功能规范:总线每条信号线(引脚的名称)、功能以及工作过程要有统一规定。电气规范:总线每条信号线的有效电平、动态转换时间、负载能力等。总线的发展情况S-100总线:产生于1975年,第一个标准化总线,为微计算机技术发展起到了推动作用。IBM-PC个人计算机采用总线结构(Industry Standard Architecture, ISA)并成为工业化的标准。先后出现8位ISA总线、16位ISA总线以及后来兼容厂商推出的EISA(Extended ISA)32位ISA总线。为了适应微处理器性能的提高及I/O模块更高吞吐率的要求,出现了VL-Bus(VESA Local Bus)和PCI(Peripheral Component Interconnect,PCI)总线。适合小型化要求的PCMCIA(Personal Computer Memory Card International Association)总线,用于笔记本计算机的功能扩展。总线的指标计算机主机性能迅速提高,各功能模块性能也要相应提高,这对总线性能提出更高的要求。总线主要技术指标有几方面:总线宽度:一次操作可以传输的数据位数,如S100为8位,ISA为16位,EISA为32位,PCI-2可达64位。总线宽度不会超过微处理器外部数据总线的宽度。总数工作频率:总线信号中有一个CLK时钟,CLK越高每秒钟传输的数据量越大。ISA、EISA为8MHz,PCI为33.3MHz, PCI-2可达达66.6MHz。单个数据传输周期:不同的传输方式,每个数据传输所用CLK周期数不同。ISA要2个,PCI用1个CLK周期。这决定总线最高数据传输率。5. 总线的分类与层次系统总线:是微处理器芯片对外引线信号的延伸或映射,是微处理器与片外存储器及I/0接口传输信息的通路。系统总线信号按功能可分为三类:地址总线(Where):指出数据的来源与去向。地址总线的位数决定了存储空间的大小。系统总线:数据总线(What)提供模块间传输数据的路径,数据总线的位数决定微处理器结构的复杂度及总体性能。控制总线(When):提供系统操作所必需的控制信号,对操作过程进行控制与定时。扩充总线:亦称设备总线,用于系统I/O扩充。与系统总线工作频率不同,经接口电路对系统总统信号缓冲、变换、隔离,进行不同层次的操作(ISA、EISA、MCA)局部总线:扩充总线不能满足高性能设备(图形、视频、网络)接口的要求,在系统总线与扩充总线之间插入一层总线。由于它经桥接器与系统总线直接相连,因此称之为局部总线(PCI)。

    标签: 微型计算机 总线

    上传时间: 2013-11-09

    上传用户:nshark

  • 子空间模式识别方法

    提出了一种改进的LSM-ALSM子空间模式识别方法,将LSM的旋转策略引入ALSM,使子空间之间互不关联的情况得到改善,提高了ALSM对相似样本的区分能力。讨论中以性能函数代替经验函数来确定拒识规则的参数,实现了识别率、误识率与拒识率之间的最佳平衡;通过对有限字符集的实验结果表明,LSM-ALSM算法有效地改善了分类器的识别率和可靠性。关 键 词 学习子空间; 性能函数; 散布矩阵; 最小描述长度在子空间模式识别方法中,一个线性子空间代表一个模式类别,该子空间由反映类别本质的一组特征矢量张成,分类器根据输入样本在各子空间上的投影长度将其归为相应的类别。典型的子空间算法有以下三种[1, 2]:CLAFIC(Class-feature Information Compression)算法以相关矩阵的部分特征向量来构造子空间,实现了特征信息的压缩,但对样本的利用为一次性,不能根据分类结果进行调整和学习,对样本信息的利用不充分;学习子空间方法(Leaning Subspace Method, LSM)通过旋转子空间来拉大样本所属类别与最近邻类别的距离,以此提高分类能力,但对样本的训练顺序敏感,同一样本训练的顺序不同对子空间构造的影响就不同;平均学习子空间算法(Averaged Learning Subspace Method, ALSM)是在迭代训练过程中,用错误分类的样本去调整散布矩阵,训练结果与样本输入顺序无关,所有样本平均参与训练,其不足之处是各模式的子空间之间相互独立。针对以上问题,本文提出一种改进的子空间模式识别方法。子空间模式识别的基本原理1.1 子空间的分类规则子空间模式识别方法的每一类别由一个子空间表示,子空间分类器的基本分类规则是按矢量在各子空间上的投影长度大小,将样本归类到最大长度所对应的类别,在类x()iω的子空间上投影长度的平方为()211,2,,()argmax()jMTkkjpg===Σx􀀢 (1)式中 函数称为分类函数;为子空间基矢量。两类的分类情况如图1所示。

    标签: 子空间 模式 识别方法

    上传时间: 2013-12-25

    上传用户:熊少锋

  • 单片机课程总结

    单片机基础知识单片机的外部结构:1、 DIP40双列直插;2、 P0,P1,P2,P3四个8位准双向I/O引脚;(作为I/O输入时,要先输出高电平)3、 电源VCC(PIN40)和地线GND(PIN20);4、 高电平复位RESET(PIN9);(10uF电容接VCC与RESET,即可实现上电复位)5、 内置振荡电路,外部只要接晶体至X1(PIN18)和X0(PIN19);(频率为主频的12倍)6、 程序配置EA(PIN31)接高电平VCC;(运行单片机内部ROM中的程序)7、 P3支持第二功能:RXD、TXD、INT0、INT1、T0、T1 单片机内部I/O部件:(所为学习单片机,实际上就是编程控制以下I/O部件,完成指定任务)1、 四个8位通用I/O端口,对应引脚P0、P1、P2和P3;2、 两个16位定时计数器;(TMOD,TCON,TL0,TH0,TL1,TH1)3、 一个串行通信接口;(SCON,SBUF)4、 一个中断控制器;(IE,IP)针对AT89C52单片机,头文件AT89x52.h给出了SFR特殊功能寄存器所有端口的定义。教科书的160页给出了针对MCS51系列单片机的C语言扩展变量类型。 C语言编程基础:1、 十六进制表示字节0x5a:二进制为01011010B;0x6E为01101110。2、 如果将一个16位二进数赋给一个8位的字节变量,则自动截断为低8位,而丢掉高8位。3、 ++var表示对变量var先增一;var—表示对变量后减一。4、 x |= 0x0f;表示为 x = x | 0x0f;5、 TMOD = ( TMOD & 0xf0 ) | 0x05;表示给变量TMOD的低四位赋值0x5,而不改变TMOD的高四位。6、 While( 1 ); 表示无限执行该语句,即死循环。语句后的分号表示空循环体,也就是{;}第一章    单片机最小应用系统:单片机最小系统的硬件原理接线图:1、 接电源:VCC(PIN40)、GND(PIN20)。加接退耦电容0.1uF2、 接晶体:X1(PIN18)、X2(PIN19)。注意标出晶体频率(选用12MHz),还有辅助电容30pF3、 接复位:RES(PIN9)。接上电复位电路,以及手动复位电路,分析复位工作原理4、 接配置:EA(PIN31)。说明原因。第二章      基本I/O口的应用第三章      显示驱动第七章      串行接口应用

    标签: 单片机

    上传时间: 2013-10-30

    上传用户:athjac

  • 模块化LED大屏幕显示器的设计

    模块化LED大屏幕显示器的设计:LED大屏幕显示器由于其醒目! 内容灵活多变等特点" 已经越来越多地应用于广告! 信息发布! 交通指示等公共场所" 取得了良好效果LED显示屏主要分为数码显示和点阵显示两大类" 本文只讨论点阵显示$ 目前的627 显示屏基本上都是先由用户提出要求" 生产厂家根据需要订做$ 每次都要重复设计电路和机械结构" 造成资源浪费" 而且若用户的需求改变" 改动将十分困难$实际上不论显示屏的大小" 其原理都是相同的"因此完全可以设计出一种标准化% 模块化的LED 显示屏" 针对不同的需要" 只需要简单组合相应的模块即可$ 本文介绍的就是一种模块化的LED 显示屏" 可以根据需要灵活改变大小" 并可以脱离计算机独立运行" 还可以实现如闪烁! 滚动显示等特效$ 对整体式显示屏刷新率不足发生闪烁的常见问题" 在这个设计中由于被分割成小模块" 不再成为问题$

    标签: LED 模块化 大屏幕 显示器

    上传时间: 2013-10-09

    上传用户:fxf126@126.com