软件无线电是无线通信领域继固定到移动、模拟到数字之后的第三次革命,是目前乃至未来的无线电领域的技术发展方向,它在提高系统灵活性上有无可比拟的优势,是实现未来无线通信系统的有效手段。扩频通信具有卓越的抗干扰和保密性能。扩频通信相对于传统的窄带通信,在频谱利用率上也有明显的优势,是未来无线通信系统中的关键技术,直接序列扩频则是其中在民用领域使用最多的一种扩频技术。FPGA在分布式计算、并行处理、流水线结构上有独特的优势,自然成为设计扩频软件无线电系统的首选技术之一。 首先介绍了软件无线电的理论基础,并分析了它的硬件结构和技术关键。软件无线电的关键思路在于构建一个通用的强大的硬件平台,这也正是本课题的主要工作之一。而后,重点介绍了直序扩频的理论基础。对于发射机,其中最关键的是寻找一种相关特性卓越的伪随机序列,本课题主要对m序列、OVSF码和Gold码进行了深入研究。最后,详述了基于DDFS的数字调制技术和FPGA技术。 基于以上理论基础研究,根据软件无线电硬件结构,开发了基于Altera公司Cyclone系列FPGA的硬件平台。该平台具有210Mbps的高速DAC,并配有串口、USB接口、音频CODEC输入输出通道、以及LVDS扩展口和SDRAM,考虑到通用性,设计中加入了足以开发出接收机的两路40Mbps的高速ADC。FPGA的代码开发也是核心内容,本课题编写了大量相应的代码,包括加扩模块(含伪随机序列发生器)、基于DDFS的数字调制模块以及串口通信模块、LCD驱动模块,SDRAM Controller、ADC驱动模块,并编写了相应的测试代码。整个系统测试通过。关于硬件平台设计和代码开发,在本文第三章和第四章详细介绍。 总体说来,本课题基于现有的理论发展,在充分理解相关理论的前提下,将主要经历集中于具体应用的研究与开发,并取得了一定的成果。
上传时间: 2013-06-27
上传用户:xauthu
随着我国信息化发展进程加快,信息化覆盖面扩大,信息安全问题也就随之增多,其影响和后果也更加广泛和严重。同时,信息安全及其对经济发展、国家安全和社会稳定的重大影响,正日益突出地显现出来,受到越来越多的关注。在和平年代,通过对信息载体进行大规模的物理破坏,从而达到危害信息安全的目的,在一定程度上是行不通的。然而,在信息安全的角力上,破坏者从来都没有放弃过,他们把目标对准了信息载体中的数据,由于数据的易失性,计算机数据成为信息安全中的最大隐患,同时也是破坏信息安全的一个突破口。 本文提出研制硬盘加密卡的主要目的是为了防止对计算机数据的窃取,保护硬盘中的数据。破坏者在得到硬盘后,也不能够得到硬盘中的数据,从而达到保护信息安全的目的。加密卡提供两个符合ATA-6标准的接口,串接在主板IDE接口和硬盘之间。存储在硬盘上的数据,是经过加密以后的加密数据;从硬盘上读出的数据,必须经过该卡的解密才可被正常使用,否则只是一堆乱码。加密卡采用FPGA技术实现IDE接口和加密算法,以减小加解密带来的速度上的影响。 论文的工作重点主要有以下几个方面的内容:FPGA及VHDL语言的研究,ATA协议标准研究及IDE接口的FPGA实现。论文对ATA协议做了细致的研究,分析了硬盘接口的工作机制以及主机与硬盘之间的通信协议,并在此基础上,重点研究了用FPGA的编程功能来实现一个计算机硬件底层接口协议的方法,详细介绍了芯片的内部框图及FPGA的软件流程图,提出了在实现过程中应注意的要点,最终用FPGA构建了一个双向IDE硬盘通道,实现了两套符合ATA-6规范的IDE接口。
上传时间: 2013-08-02
上传用户:Ants
本文进行了基于FPGA的GPS直序伪码扩频接收机的设计和数字化硬件实现。论文首先对GPS卫星导航定位系统进行了分析,并对与数字化接收机直接相关联的GPS信号中频部分结合实际系统要求进行了设计和分析,由此确定了数字化伪码捕获跟踪接收机研制的具体要求,之后完成了接收机中频数字化方案设计。同时对伪码捕获跟踪后端的载波捕获跟踪的实现方案进行了描述和分析。最后利用EDA工具在FPGA芯片上实现了GPS数字化接收机的伪码捕获跟踪。 受工作环境的制约,GPS卫星接收机系统首先表现为功率受限系统,接收机必须满足在低信噪比条件下工作。同时接收机与卫星间高动态产生的多普勒频率,给接收机实现快速捕获带来了难度。通过仿真分析,综合了实现难度和性能两方面因素,针对小信噪比工作条件提出了改进型的序贯伪码捕获实施方案。同时按照捕获概率和时间的要求,对接收机偏压、上、下门限、NCO增益等进行了设计和仿真分析,确定了捕获的数字化实现方案,伪码跟踪采用超前滞后环方案。捕获完成后可使本地伪码与接收伪码的相对误差保持在±1/4码元范围内,而跟踪环路的跟踪范围为±4/3码元,保证了捕获到跟踪的可靠衔接,同时采用可变环路带宽措施解决了跟踪速度和精度的矛盾。 在数字化实现设计中,给出了详细的数字化实现方案和分析,这样在保证工作精度的同时尽量减少硬件资源的开销,利用EDA工具,采用Veilog设计语言在Xilinx的VirtexII系列的XC2V500fg256的FPGA上完成数字化接收机伪码捕获跟踪的实现,并在其开发平台上对数字化接收机进行了仿真验证,在给定的工作条件下达到了设计性能和指标要求。
上传时间: 2013-04-24
上传用户:15510133306
实时红外图像处理是红外成像制导的关键技术。本课题来源于兵器工业部第209研究所承担研制的红外成像制导技术背景下的红外图像信息处理机项目。 本文在总结国内外研究现状的基础上,做了大量红外图像信息处理系统硬件部分的设计工作。主要有以下几点: 1.系统方案和总体结构设计 在分析比较目前几种主流系统方案后,将红外图像处理机设计成“双FPGA+双DSP+CPCI”结构。选用ADI公司TigerSHARK系列的DSP芯片ADSP-TS201作为系统高层算法处理的核心处理器,选用Altera公司的FPGA芯片StratixⅡ EP2S60F67214作为底层算法处理和接口控制的核心,选用高速CPCI总线作为红外图像信息处理机与主机的通讯桥梁。 2.FPGA部分的设计是本课题的核心,对FPGA部分进行了设计和调试 (1)图像预处理模块:FPGA负责系统的底层预处理算法和相应控制。首先对采集来的图像数据进行中值滤波和直方图统计,然后按照链路口(Linkport)的通信协议,将预处理后的图像数据实时地从FPGA传给DSP。 (2)DSP-CPCI桥接模块:FPGA负责DSP与CPCI的接口,将DSP处理后的结果通过DSP-CPCI桥接模块传给主机。 联调实验测试表明,实时红外图像信息处理成功实现了对典型红外目标的检测、识别和跟踪,从而验证系统核心FPGA部分的设计是成功的。
上传时间: 2013-07-13
上传用户:gjzeus
数字信号发生器是数字信号处理中不可缺少的调试设备。在某工程项目中,为了提供特殊信号,比如雷达信号,就需要设计专用的数字信号发生器,用以达到发送雷达信号的要求。在本文中提出了使用PCI接口的专用数字信号发生器方案。 该方案的目标是能够采录雷达信号,把信号发送到主机作为信号文件存储起来,然后对这个信号文件进行航迹分离,得到需要的航迹信号文件。同时,信号发生器具有发送信号的功能,可以把不同形式的信号文件发送到检测端口,用于设备调试。 在本文中系统设计主要分为硬件和软件两个方面来介绍: 硬件部分采用了FPGA逻辑设计加上外围电路来实现的。在硬件设计中,最主要的是FPGA逻辑设计,包括9路主从SPI接口信号的逻辑控制,片外SDRAM的逻辑控制,PCI9054的逻辑控制,以及这些逻辑模块间信号的同步、发送和接收。在这个过程中信号的方向是双向的,所选用的芯片都具有双向数据的功能。 在本文中软件部分包括驱动软件和应用软件。驱动软件采用PLXSDK驱动开发,通过控制PCI总线完成数据的采录和发送。应用软件中包括数据提取和数据发送,采用卡尔曼滤波器等方法。 通过实验证明该方案完全满足数据传输的要求,达到SPI传输的速度要求,能够完成航迹提取,以及数据传输。
上传时间: 2013-07-03
上传用户:xzt
本文研究了基于Nios Ⅱ的FPGA-CPU调试技术。论文研究了NiosⅡ嵌入式软核处理器的特性;实现了以Nios Ⅱ嵌入式处理器为核心的FPGA-CPU调试系统的软、硬件设计;对两种不同类型的FPGA-CPU进行了实际调试,对实验数据进行了分析。 在硬件方面,为了控制和检测FPGA-CPU,设计并实现了FPGA-CPU的控制电路、FPGA-CPU的内部通用寄存器组扫描电路、存储器电路等;完成了各种外围设备接口的设计;实现了调试系统的整体设计。 在软件方面,设计了调试监控软件,完成了对FPGA-CPU运行的控制和信号状态的监测。这些信号包括地址和数据总线以及各种寄存器的数据等;实现了多种模式下的FPGA-CPU调试支持单时钟调试、单步调试和软件断点多种调试模式。此外,设计了专用的编译软件,实现了基于不同指令系统的伪汇编程序编译,提高了调试效率。 本文作者在实现了FPGA-CPU调试系统基础上,对两种指令系统不同、结构迥异的FPGA-CPU进行实际调试。调试结果表明,这种基于IP核的可复用设计技术,能够在一个FPGA芯片内实现调试系统和FPGA-CPU的无缝连接,能够有效地调试FPGA-CPU。
上传时间: 2013-05-19
上传用户:xinyuzhiqiwuwu
数据采集系统是将传感器输出的模拟信号进行采集,转换成数字信号,然后送入计算机进行处理,并按需要的形式输出处理结果的系统。随着计算机技术和电子信息技术的高速发展,数据采集结合先进的电子技术,已经能利用软件来处理大量测量数据。近年来,对于数据采集系统的要求与日俱增,数据采集系统有着非常良好的应用前景。如今的数据采集技术已渗透到分析仪器、医疗器械、雷达、通讯、等技术领域。 本论文在研究了USB总线技术的基础上,详细介绍了一个基于USB和FPFA技术的数据采集系统,包括硬件设计、固件设计、设备驱动程序设计和主机应用程序设计。在硬件设计部分,本文先介绍了数据采集芯片、FPGA以及USB2.0接口芯片FX2 CY7C68013的性能和特点,然后给出了具体的硬件设计方案;在固件设计部分,本文先介绍了FX2的固件架构,随后详细地介绍了CY7C68013GPIF接口模式的固件设计;在驱动程序开发部分,先引入了WDM驱动程序开发模型,然后介绍了本数据采集系统的USB设备驱动程序的设计;最后结合驱动程序完成了基于虚拟仪器LabVIEW的主机应用程序。
上传时间: 2013-07-16
上传用户:zjt20011220
三维彩色信息获取系统目的是获取对象的三维空间坐标和颜色信息。它是计算机视觉研究的重要内容,也是当前信息科学研究中的一个重要热点。 本文首先介绍了三维信息获取技术的意义和实时可重构三维激光彩色信息获取系统总体方案。该方案合理划分了系统的图像处理任务,充分地利用了拥有的硬、软件资源。阐述了基于FPGA处理器的硬件系统结构及其工作原理和系统工作时序。 本文还研究了图像处理系统中的数字逻辑设计,总结出了较完整、规范化的设计流程和方法,介绍了从图像处理算法到可编程逻辑器件的规范化映射方法,总结了在视频系统中的高级设计技巧,包括并行流水线技术和循环结构的硬件实现方式等。 为了说明提出的设计方法,本文分析了基于自适应阈值的结构光条纹中心的方向模板快速检测算法的硬件实现。该算法是把自适应阈值法与可变方向模板法相结合,具有稳定性好、精度高、计算简单、数据存储量小、实现速度快的特点,此外,该方法有利于硬件快速实现。实践证明这种方法是实用的、有效的。 本文的重点在于研制了具有完全自主知识产权的实时可重构三维激光彩色信息获取系统中视频图像处理专用集成电路。该集成电路是实现系统快速算法的核心,使用现场可编程器FPGA器件EPlK50实现提取激光线、提取人头轮廓线和提取中心颜色线算法;该集成电路还要实现系统所需的控制逻辑。控制部分包括将视频采集输出端口信号转化为RGB真彩色信号的数据锁存模块、各FIFO缓存器的输入输出控制模块和系统需要的其它信号控制模块。提出提取轮廓线快速算法,即由FPGA处理器与主机交互式共同快速完成提取人头正侧影轮廓线算法。该专用集成电路研制是整个实时可重构三维激光彩色信息获取系统实现的关键。
标签:
上传时间: 2013-07-23
上传用户:lguotao
信号与信息处理是信息科学中近几年来发展最为迅速的学科之一,随着片上系统(SOC,System On Chip)时代的到来,FPGA正处于革命性数字信号处理的前沿。基于FPGA的设计可以在系统可再编程及在系统调试,具有吞吐量高,能够更好地防止授权复制、元器件和开发成本进一步降低、开发时间也大大缩短等优点。然而,FPGA器件是基于SRAM结构的编程工艺,掉电后编程信息立即丢失,每次加电时,配置数据都必须重新下载,并且器件支持多种配置方式,所以研究FPGA器件的配置方案在FPGA系统设计中具有极其重要的价值,这也给用于可编程逻辑器件编程的配置接口电路和实验开发设备提出了更高的要求。 本论文基于IEEE1149.1标准和USB2.0技术,完成了FPGA配置接口电路及实验开发板的设计与实现。作者在充分理解IEEE1149.1标准和USB技术原理的基础上,针对Altcra公司专用的USB数据配置电缆USB-Blaster,对其内部工作原理及工作时序进行测试与详细分析,完成了基于USB配置接口的FPGA芯片开发实验电路的完整软硬件设计及功能时序仿真。作者最后进行了软硬件调试,完成测试与验证,实现了对Altera系列PLD的配置功能及实验开发板的功能。 本文讨论的USB下载接口电路被验证能在Altera的QuartusII开发环境下直接使用,无须在主机端另行设计通信软件,其兼容性较现有设计有所提高。由于PLD(Programmable Logic Device)厂商对其知识产权严格保密,使得基于USB接口的配置电路应用受到很大限制,同时也加大了自行对其进行开发设计的难度。 与传统的基于PC并口的下载接口电路相比,本设计的基于USB下载接口电路及FPGA实验开发板具有更高的编程下载速率、支持热插拔、体积小、便于携带、降低对PC硬件伤害,且具备其它下载接口电路不具备的SignalTapII嵌入式逻辑分析仪和调试NiosII嵌入式软核处理器等明显优势。从成本来看,本设计的USB配置接口电路及FPGA实验开发板与其同类产品相比有较强的竞争力。
上传时间: 2013-06-07
上传用户:2525775
详细描述了USB3.0的技术规范,参数。包括传输类型,主机和设备的描述,层的划分,等等。
上传时间: 2013-06-05
上传用户:小火车啦啦啦