本文重点研究的是补偿编码键控(CCK)的调制与解调算法原理,以及基于FPGA进行的系统设计实现。作为IEEE802.11b标准中关键的调制技术,CCK码具有良好的相关特性,能够在高速率传输数据的同时有效的克服多径效应。本文首先对WLAN的结构和特点进行了简单介绍,对其中的IEEE802.11b标准进行了研究,并着重分析了其物理层基带部分的结构和规范。然后系统的介绍了CCK码的特点,重点对11Mb/s模式下基于“基本CCK码字集”的CCK调制原理和基于快速沃尔什变换(FWT)块的CCK解调原理进行了分析讨论。接下来通过在Matlab中对调制和解调方案的仿真,得到了正确的理论数据,并验证了系统设计的可行性。最后在Xilinx公司的ISE6.2开发环境下,使用硬件描述语言Verilog HDL对CCK调制和解调系统在FPGA中进行了设计,然后将整个系统在ModelSim中进行了功能仿真。理论分析和仿真结果的比较表明系统设计是正确的,而且系统性能良好。 本文所设计的基于FPGA的CCK调制和解调系统具有集成度高、稳定性强和能够在线软件更新等特点。研究成果可以给将来设计更高性能、更高集成度的基带WLAN芯片提供基础。
上传时间: 2013-06-02
上传用户:yoleeson
众所周知,信息传输的核心问题是有效性和可靠性,调制解调技术的发展正是体现了这一思想。从最早的模拟调幅调频技术的日益完善,到现在数字调制技术的广泛运用,使得信息的传输更为有效和可靠。QAM调制作为一种新的调制技术,因其具有很高的频带利用率而得到了广泛的应用。 本文对基于FPGA的16QAM调制解调进行了讨论和研究。首先对16QAM调制解调原理进行了阐述,建立了16QAM调制解调系统的数学模型,然后通过分析提出了基于FPGA的16QAM调制解调系统的设计方案。最后编写Verilog代码实现了算法仿真。 FPGA芯片采用的是Altera公司的大规模集成电路芯片Cyclone系列的EPlC20F32417,并通过软件编程对其进行了相关调试。文中详细介绍了基带成形滤波器、载波恢复和定时同步的基本原理及其设计方法。首先用Matlab对整个16QAM系统进行了软件仿真;然后用硬件描述语言Verilog HDL在QuartusⅡ环境下完成了系统关键算法的编写、行为仿真和综合,最后详细阐述了异步串口(UART)的FPGA实现,把我们编写的Verilog程序下载到EPlC20F32417芯片上效果很好。
上传时间: 2013-06-12
上传用户:q123321
在图像处理及检测系统中,实时性要求往往影响着系统处理速度的性能。本文在分析研究视频检测技术及方法的基础上,应用嵌入式系统设计和图像处理技术,以交通信息视频检测系统为研究背景,展开了基于FPGA视频图像检测技术的研究与应用,通过系统仿真验证了基于FPGA架构的图像并行处理和检测系统具有较高的实时处理能力,能够准确并稳定地检测出运动目标的信息。可见FPGA对提高视频检测及处理的实时性是一个较好的选择。 本文主要研究的内容有: 1.分析研究了视频图像检测技术,针对传统基于PC构架和DSP处理器的视频检测系统的弊端,并从可靠性、稳定性、实时性和开发成本等因素考虑,提出了以FPGA芯片作为中央处理器的嵌入式并行数据处理系统的设计方案。 2.应用模块化的硬件设计方法,构建了新一代嵌入式视频检测系统的硬件平台。该系统由异步FIFO模块、图像空间转换模块、SRAM帧存控制模块、图像预处理模块和图像检测模块等组成,较好地解决了图像采样存储、处理和传输的问题,并为以后系统功能的扩展奠定了良好的基础。 3.在深入研究了线性与非线性滤波几种图像处理算法,分析比较了各自的优缺点的基础上,本文提出一种适合于FPGA的快速图像中值滤波算法,并给出该算法的硬件实现结构图,应用VHDL硬件描述语言编程、实现,仿真结果表明,快速中值滤波算法的处理速度较传统算法提高了50%,更有效地降低了系统资源占用率和提高了系统运算速度,增强了检测系统的实时性能。 4.研究了基于视频的交通车流量检测算法,重点讨论背景差分法,图像二值化以及利用直方图分析方法确定二值化的阈值,并对图像进行了直方图均衡处理,提高图像检测精度。并结合嵌入式系统处理技术,在FPGA系统上研究设计了这些算法的硬件实现结构,用VHDL语言实现,并对各个模块及相应算法做出了功能仿真和性能分析。 5.系统仿真与验证是整个FPGA设计流程中最重要的步骤,针对现有仿真工具用手动设置输入波形工作量大等弊病,本文提出了一种VHDL测试基准(TestBench)方法解决系统输入源仿真问题,用TEXTIO程序包设计了MATLAB与FPGA仿真软件的接口,很好地解决了仿真测试中因测试向量庞大而难以手动输入的问题。并将系统的仿真结果数据在MATLAB上还原为图像,方便了系统测试结果的分析与调试。系统测试的结果表明,运动目标的检测基本符合要求,可以排除行走路人等移动物体(除车辆外)的噪声干扰,有效地检测出正确的目标。 本文主要研究了基于FPGA片上系统的图像处理及检测技术,针对FPGA技术的特点对某些算法提出了改进,并在MATLAB、QuartusⅡ和ModelSim软件开发平台上仿真实现,仿真结果达到预期目标。本文的研究对智能化交通监控系统的车流量检测做了有益探索,对其他场合的图像高速处理及检测也具有一定的参考价值。
上传时间: 2013-07-13
上传用户:woshiayin
嵌入式图像采集、处理与传输系统具有体积小、稳定性高等优点,在智能交通、电力、通讯、计算机视觉等领域应用广泛。随着DSP技术的发展,在DSP上用软件实现实时视频压缩成为数字视频压缩标准应用的亮点,这种应用比起专门的压缩芯片更具有灵活性和升级潜力。 本文主要研究一种基于DSP TMS320VC5402脱机视频采集、压缩编码和视频数据通信的方法和DSP外围硬件系统设计。 在本设计中,图像采集部分利用SAA7111视频采集芯片完成视频信号的精确采集;利用FPGA完成复杂且高速的逻辑控制及时序设计,完成DSP外扩RAM,Flash等高速硬件电路设计,同时完成DSP的地址译码电路,将采集的数字视频信号存储在DSP外扩存储空间中;用FPGA基于N1OSⅡ来虚拟设计了I
上传时间: 2013-07-02
上传用户:亚亚娟娟123
现代通信系统要求通信距离远、通信容量大、传输质量好。作为其关键技术之一的调制解调技术一直是人们研究的一个重要方向。用FPGA实现调制解调器具有体积小、功耗低、集成度高、可软件升级、抗干扰能力强的特点,符合未来通信技术发展的方向。论文从以下几个方面讨论和实现了基于FPGA的调制解调系统。 论文首先介绍了调制解调系统的发展现状及FPGA的相关知识。然后介绍了几种常见的相位调制解调方式,重点是QDPSK调制解调系统的理论算法。 论文重点介绍了QDPSK解调调制系统的具体实现。首先,在在MATLAB环境下对系统里的每个子模块完成了功能仿真,并取得满意的仿真结果;其次,在QDPSK调制解调系统功能仿真正确的基础上,对每个模块的功能编写C++算法,并且验证了算法的正确性和可实现性;最后,在altera公司的FPGA开发平台Quartus Ⅱ 6.0上,采用Verilog硬件描述语言对QDPSK调制解调系统实现了时序仿真和综合仿真。
上传时间: 2013-07-21
上传用户:moonkoo7
本论文介绍了几种编码和调制技术的基本原理和课题的总体实现结构,重点分析和讨论了滚降系数可调的成形滤波、内插技术以及滤波器中乘法器、加法器的实现方法。通过外部控制器可对FPGA内部设计的多项参数进行设置,可支持32.000kbps~4.096Mbps范围内的多速率数据传输,适用于各种信道限带性能要求的传输系统。本论文使用一片FPGA芯片实现了信道编码(包括数据加扰、差分编码、卷积码、RS码、交织等)、多种调制方式(BPSK、QPSK、π/4-QPSK、TC8PSK、16QAM)、成形滤波器、多级内插、上变频器、具有连续/突发信号模式的数据源。将本论文的成果移植到某单位的信号源研制平台,基本上可以满足现阶段研制和维修解调设备对信号源的需求,因此具有较高的使用价值。
上传时间: 2013-07-27
上传用户:feichengweoayauya
本论文在详细研究MIL-STD-1553B数据总线协议以及参考国外芯片设计的基础上,结合目前新兴的EDA技术和大规模可编程技术,提出了一种全新的基于FPGA的1553B总线接口芯片的设计方法。 从专用芯片实现的具体功能出发,结合自顶向下的设计思想,给出了总线接口的总体设计方案,考虑到电路的具体实现对结构进行模块细化。在介绍模拟收发器模块的电路设计后,重点介绍了基于FPGA的BC、RT、MT三种类型终端设计,最终通过工作方式选择信号以及其他控制信号将此三种终端结合起来以达到通用接口的功能。同时给出其设计逻辑框图、算法流程图、引脚说明以及部分模块的仿真结果。为了资源的合理利用,对其中相当部分模块进行复用。在设计过程中采用自顶向下、码型转换中的全数字锁相环、通用异步收发器UART等关键技术。本设计使用VHDL描述,在此基础之上采用专门的综合软件对设计进行了综合优化,在FPGA芯片EP1K100上得以实现。通过验证证明该设计能够完成BC/RT/MT三种模式的工作,能处理多种消息格式的传输,并具有较强的检错能力。 最后设计了总线接口芯片测试系统,选择TMS320LF2407作为主处理器,测试主要包括主处理器的自发自收验证,加入RS232串口调试过程提高测试数据的直观性。验证的结果表明本文提出的设计方案是合理的。
上传时间: 2013-04-24
上传用户:sz_hjbf
图像处理技术应用越来越广泛,特别是工业检测领域。然而,图像处理技术应用的基础是图像的获取,为了更加灵活地设计各种应用产品,本课题研究基于FPGA的面阵 CCD驱动传输电路设计,利用该电路能够获取高质量、高分辨率的图像,为后续的图像处理技术应用打下基础。本文首先介绍了研究意义、CCD图像传感器的发展以及FPGA的产生与发展,接着提出了面阵CCD成像系统总体设计方案,然后针对关键电路的设计进行详尽的分析和说明,这些电路包括时序发生电路、存储器控制电路、USB接口电路以及电源调理电路。其中时序发生电路主要用于产生CCD正常工作所需的各种时序信号以及A/D变换芯片AD9824 所需的工作时序,这些时序都是由FPGA产生的,文中给出了FPGA逻辑设计的基本过程以及仿真波形。本系统采用SDRAM缓存图像信号,为了完成SDRAM的写入、读出以及定时刷新,利用FPGA生成存储器控制电路。系统采用USB接口与计算机通信,因此FPGA 中设计了相应逻辑电路与CY7C68013A USB接口芯片实现信号握手及数据通信,进而与 PC机通信。为了保证各个芯片正常工作,设计电源调理电路实现将输入5V电源转换成多种电压向各个芯片供电。经过初步调试,并根据仿真结果判断驱动传输电路基本达到设计要求。关键词:FPGA,CCD,A/D变换,SDRAM,USB,驱动时序
上传时间: 2013-04-24
上传用户:prczsf
关于如何理解门电路的传输电气特性的理论分析,对于更好的使用门电路做个技术参考
上传时间: 2013-05-18
上传用户:lon80727692
摘要: 介绍了时钟分相技术并讨论了时钟分相技术在高速数字电路设计中的作用。 关键词: 时钟分相技术; 应用 中图分类号: TN 79 文献标识码:A 文章编号: 025820934 (2000) 0620437203 时钟是高速数字电路设计的关键技术之一, 系统时钟的性能好坏, 直接影响了整个电路的 性能。尤其现代电子系统对性能的越来越高的要求, 迫使我们集中更多的注意力在更高频率、 更高精度的时钟设计上面。但随着系统时钟频率的升高。我们的系统设计将面临一系列的问 题。 1) 时钟的快速电平切换将给电路带来的串扰(Crosstalk) 和其他的噪声。 2) 高速的时钟对电路板的设计提出了更高的要求: 我们应引入传输线(T ransm ission L ine) 模型, 并在信号的匹配上有更多的考虑。 3) 在系统时钟高于100MHz 的情况下, 应使用高速芯片来达到所需的速度, 如ECL 芯 片, 但这种芯片一般功耗很大, 再加上匹配电阻增加的功耗, 使整个系统所需要的电流增大, 发 热量增多, 对系统的稳定性和集成度有不利的影响。 4) 高频时钟相应的电磁辐射(EM I) 比较严重。 所以在高速数字系统设计中对高频时钟信号的处理应格外慎重, 尽量减少电路中高频信 号的成分, 这里介绍一种很好的解决方法, 即利用时钟分相技术, 以低频的时钟实现高频的处 理。 1 时钟分相技术 我们知道, 时钟信号的一个周期按相位来分, 可以分为360°。所谓时钟分相技术, 就是把 时钟周期的多个相位都加以利用, 以达到更高的时间分辨。在通常的设计中, 我们只用到时钟 的上升沿(0 相位) , 如果把时钟的下降沿(180°相位) 也加以利用, 系统的时间分辨能力就可以 提高一倍(如图1a 所示)。同理, 将时钟分为4 个相位(0°、90°、180°和270°) , 系统的时间分辨就 可以提高为原来的4 倍(如图1b 所示)。 以前也有人尝试过用专门的延迟线或逻辑门延时来达到时钟分相的目的。用这种方法产生的相位差不够准确, 而且引起的时间偏移(Skew ) 和抖动 (J itters) 比较大, 无法实现高精度的时间分辨。 近年来半导体技术的发展, 使高质量的分相功能在一 片芯片内实现成为可能, 如AMCC 公司的S4405, CY2 PRESS 公司的CY9901 和CY9911, 都是性能优异的时钟 芯片。这些芯片的出现, 大大促进了时钟分相技术在实际电 路中的应用。我们在这方面作了一些尝试性的工作: 要获得 良好的时间性能, 必须确保分相时钟的Skew 和J itters 都 比较小。因此在我们的设计中, 通常用一个低频、高精度的 晶体作为时钟源, 将这个低频时钟通过一个锁相环(PLL ) , 获得一个较高频率的、比较纯净的时钟, 对这个时钟进行分相, 就可获得高稳定、低抖动的分 相时钟。 这部分电路在实际运用中获得了很好的效果。下面以应用的实例加以说明。2 应用实例 2. 1 应用在接入网中 在通讯系统中, 由于要减少传输 上的硬件开销, 一般以串行模式传输 图3 时钟分为4 个相位 数据, 与其同步的时钟信号并不传输。 但本地接收到数据时, 为了准确地获取 数据, 必须得到数据时钟, 即要获取与数 据同步的时钟信号。在接入网中, 数据传 输的结构如图2 所示。 数据以68MBös 的速率传输, 即每 个bit 占有14. 7ns 的宽度, 在每个数据 帧的开头有一个用于同步检测的头部信息。我们要找到与它同步性好的时钟信号, 一般时间 分辨应该达到1ö4 的时钟周期。即14. 7ö 4≈ 3. 7ns, 这就是说, 系统时钟频率应在300MHz 以 上, 在这种频率下, 我们必须使用ECL inp s 芯片(ECL inp s 是ECL 芯片系列中速度最快的, 其 典型门延迟为340p s) , 如前所述, 这样对整个系统设计带来很多的困扰。 我们在这里使用锁相环和时钟分相技术, 将一个16MHz 晶振作为时钟源, 经过锁相环 89429 升频得到68MHz 的时钟, 再经过分相芯片AMCCS4405 分成4 个相位, 如图3 所示。 我们只要从4 个相位的68MHz 时钟中选择出与数据同步性最好的一个。选择的依据是: 在每个数据帧的头部(HEAD) 都有一个8bit 的KWD (KeyWord) (如图1 所示) , 我们分别用 这4 个相位的时钟去锁存数据, 如果经某个时钟锁存后的数据在这个指定位置最先检测出这 个KWD, 就认为下一相位的时钟与数据的同步性最好(相关)。 根据这个判别原理, 我们设计了图4 所示的时钟分相选择电路。 在板上通过锁相环89429 和分相芯片S4405 获得我们所要的68MHz 4 相时钟: 用这4 个 时钟分别将输入数据进行移位, 将移位的数据与KWD 作比较, 若至少有7bit 符合, 则认为检 出了KWD。将4 路相关器的结果经过优先判选控制逻辑, 即可输出同步性最好的时钟。这里, 我们运用AMCC 公司生产的 S4405 芯片, 对68MHz 的时钟进行了4 分 相, 成功地实现了同步时钟的获取, 这部分 电路目前已实际地应用在某通讯系统的接 入网中。 2. 2 高速数据采集系统中的应用 高速、高精度的模拟- 数字变换 (ADC) 一直是高速数据采集系统的关键部 分。高速的ADC 价格昂贵, 而且系统设计 难度很高。以前就有人考虑使用多个低速 图5 分相技术应用于采集系统 ADC 和时钟分相, 用以替代高速的ADC, 但由 于时钟分相电路产生的相位不准确, 时钟的 J itters 和Skew 比较大(如前述) , 容易产生较 大的孔径晃动(Aperture J itters) , 无法达到很 好的时间分辨。 现在使用时钟分相芯片, 我们可以把分相 技术应用在高速数据采集系统中: 以4 分相后 图6 分相技术提高系统的数据采集率 的80MHz 采样时钟分别作为ADC 的 转换时钟, 对模拟信号进行采样, 如图5 所示。 在每一采集通道中, 输入信号经过 缓冲、调理, 送入ADC 进行模数转换, 采集到的数据写入存储器(M EM )。各个 采集通道采集的是同一信号, 不过采样 点依次相差90°相位。通过存储器中的数 据重组, 可以使系统时钟为80MHz 的采 集系统达到320MHz 数据采集率(如图6 所示)。 3 总结 灵活地运用时钟分相技术, 可以有效地用低频时钟实现相当于高频时钟的时间性能, 并 避免了高速数字电路设计中一些问题, 降低了系统设计的难度。
上传时间: 2013-12-17
上传用户:xg262122