随着高压电动机对调速性能、节能增效要求的增加,高压变频器得到了日益增长的需求,对其结构原理和变频调速算法的研究是当前电气传动领域的热点问题。本文对IOKV单元串联式高压变频器进行了全面的研究与设计:分析了其电路原理和控制方式;给出了模拟量控制电路的实现和IOKV整机评价试验结果;并对高压变频器的无速度传感器矢量控制策略进行了设计。
上传时间: 2013-11-14
上传用户:ZJX5201314
变频器是利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控制装置。我们现在使用的变频器主要采用交—直—交方式(VVVF变频或矢量控制变频),先把工频交流电源通过整流器转换成直流电源,然后再把直流电源转换成频率、电压均可控制的交流电源以供给电动机。变频器的电路一般由整流、中间直流环节、逆变和控制4个部分组成。整流部分为三相桥式不可控整流器,逆变部分为IGBT三相桥式逆变器,且输出为PWM波形,中间直流环节为滤波、直流储能和缓冲无功功率。
上传时间: 2013-11-10
上传用户:alex wang
光伏逆变电源并网运行时本质上为电流源。其输出电流滤波不但会对电网产生严重的谐波污染,同时其输出电流锁相不精确会降低系统的转化效率。针对以上问题,采用电流瞬时值和电流有效值双闭环控制策略实现对输出电流波形的控制;研制一种具有尖峰抑制作用的LCL 滤波器,通过对其数学模型的幅频分析说明了其良好的滤波特性;设计了一种软件锁相环,并在此基础上通过α 角的修正实现了精确可靠地锁相。实验结果验证了设计的合理性和正确性,实现了单位功率因数输出正弦波电流。
上传时间: 2013-11-18
上传用户:ikemada
通用变频器能量回馈PWM控制系统是一种采用有源逆变方式把电动机减速制动时产生的再生能量回馈电网的装置。它可以克服通用变频器传统制动电阻方式低效、难以满足快速制动和频繁正反转的不足,使通用变频器可在四象限运行。本文首先回顾了变频调速能量回馈控制技术的发展历史及现状,并介绍了常见的两个方案。
上传时间: 2013-11-12
上传用户:paladin
变频器是利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控制装置。我们现在使用的变频器主要采用交—直—交方式(VVVF变频或矢量控制变频),先把工频交流电源通过整流器转换成直流电源,然后再把直流电源转换成频率、电压均可控制的交流电源以供给电动机。变频器的电路一般由整流、中间直流环节、逆变和控制4个部分组成。整流部分为三相桥式不可控整流器,逆变部分为IGBT三相桥式逆变器,且输出为PWM波形,中间直流环节为滤波、直流储能和缓冲无功功率。
上传时间: 2013-11-20
上传用户:sevenbestfei
电流瞬时值控制逆变器有多种实现方案.本文从系统稳定性、外特性以及负载适应能力等方面对电感电流反馈滞环电流控制,固定开关频率电感电流反馈控制和电容电流反馈控制进行了对比分析,以综合评估各种控制方案的性能,为方案选择提供依据。理论分析和实验结果表明,在系统稳定条件略为苛刻的情况下,采用固定开关频率的电容电流反馈控制的逆变器具有很好的输出电压波形、很硬的外特性以及良好的非线性负载适应性.是一种较好的电流瞬时值控制技术。
上传时间: 2013-11-19
上传用户:liangliang123
一、实验目的 1. 学会选择变压器、整流二极管、滤波电容及集成稳 压 器来设计直流稳压电源。 2. 掌握直流稳压电源的主要性能参数及测试方法。 二、实验原理 电子设备一般都需要直流电源供电。这些直流电 除了少数直接利用干电池和直流发电机外,大多数是 采用把交流电(市电)转变为直流电的直流稳压电源。 直流稳压电源由电源变压器T、整流、滤波和稳压电路四部分组成,其原理框图如图1 所示。电网供给的交流电压u1(220V,50Hz) 经电源变压器降压后,得到符合电路需要的交流电压u2,然后由整流电路变换成方向不变、大小随时间变化的脉动电压u3,再用滤波器滤去其交流分量,就可得到比较平直的直流电压uI。但这样的直流输出电压,还会随交流电网电压的波动或负载的变动而变化。在对直流供电要求较高的场合,还需要使用稳压电路,以保证输出直流电压更加稳定。 1、串联型稳压电源的基本原理 图2是由分立元件组成的串联型稳压电源的电路图。其整流部分为单相桥式整流、电容滤波电路。稳压部分为串联型稳压电路,它由调整元件(晶体管V1);比较放大器V2、R7;取样电路R1、R2、RP,基准电压VD、R3和过流保护电路V3管及电阻R4、R5、R6等组成。整个稳压电路是一个具有电压串联负反馈的闭环系统,其稳压过程为:当电网电压波动或负载变动引起输出直流电压发生变化时,取样电路取出输出电压的一部分送入比较放大器,并与基准电压进行比较,产生的误差信号经T2放大后送至调整管V1的基极,使调整管改变其管压降,以补偿输出电压的变化,从而达到稳定输出电压的目的。 2、集成稳压器 能够完成稳压功能的集成稳压器种类很多,根据调整管工作在线性放大区还是工作在开关状态,将其分为线性集成稳压器和开关集成稳压器。线性集成稳压器中,由于三端式稳压器只有三个引出端子,性能稳定、价格低廉等优点,因而得到广泛的应用。三端式稳压器有两种,一种输出电压是固定的,称为固定输出三端稳压器,另一种输出电压是可调的,称为可调三端稳压器。图 4是常用的三端稳压器示意图。
标签: 直流稳压电源
上传时间: 2013-11-27
上传用户:qazxsw
随着我国通信、电力事业的发展,通信、电力网络的规模越来越大,系统越来越复杂。与之相应的对交流供电的可靠性、灵活性、智能化、免维护越来越重要。在中国通信、电力网络中,传统的交流供电方案是以UPS或单机式逆变器提供纯净不间断的交流电源。由于控制技术的进步、完善,(N+X)热插拔模块并联逆变电源已经非常成熟、可靠;在欧美的通信、电力发达的国家,各大通信运营商、电力供应商、军队均大量应用了这种更合理的供电方案。与其它方案相比较,(N+X)热插拔模块并联逆变电源具有以下明显的优点。
上传时间: 2014-03-24
上传用户:alan-ee
6N137的结构原理如图1所示,信号从脚2和脚3输入,发光二极管发光,经片内光通道传到光敏二极管,反向偏置的光敏管光照后导通,经电流-电压转换后送到与门的一个输入端,与门的另一个输入为使能端,当使能端为高时与门输出高电平,经输出三极管反向后光电隔离器输出低电平。当输入信号电流小于触发阈值或使能端为低时,输出高电平,但这个逻辑高是集电极开路的,可针对接收电路加上拉电阻或电压调整电路。
上传时间: 2014-03-24
上传用户:skhlm
38V/100A可直接并联大功率AC/DC变换器 随着电力电子技术的发展,电源技术被广泛应用于计算机、工业仪器仪表、军事、航天等领域,涉及到国民经济各行各业。特别是近年来,随着IGBT的广泛应用,开关电源向更大功率方向发展。研制各种各样的大功率,高性能的开关电源成为趋势。某电源系统要求输入电压为AC220V,输出电压为DC38V,输出电流为100A,输出电压低纹波,功率因数>0.9,必要时多台电源可以直接并联使用,并联时的负载不均衡度<5%。 设计采用了AC/DC/AC/DC变换方案。一次整流后的直流电压,经过有源功率因数校正环节以提高系统的功率因数,再经半桥变换电路逆变后,由高频变压器隔离降压,最后整流输出直流电压。系统的主要环节有DC/DC电路、功率因数校正电路、PWM控制电路、均流电路和保护电路等。 1 有源功率因数校正环节 由于系统的功率因数要求0.9以上,采用二极管整流是不能满足要求的,所以,加入了有源功率因数校正环节。采用UC3854A/B控制芯片来组成功率因数电路。UC3854A/B是Unitrode公司一种新的高功率因数校正器集成控制电路芯片,是在UC3854基础上的改进。其特点是:采用平均电流控制,功率因数接近1,高带宽,限制电网电流失真≤3%[1]。图1是由UC3854A/B控制的有源功率因数校正电路。 该电路由两部分组成。UC3854A/B及外围元器件构成控制部分,实现对网侧输入电流和输出电压的控制。功率部分由L2,C5,V等元器件构成Boost升压电路。开关管V选择西门康公司的SKM75GB123D模块,其工作频率选在35kHz。升压电感L2为2mH/20A。C5采用四个450V/470μF的电解电容并联。因为,设计的PFC电路主要是用在大功率DC/DC电路中,所以,在负载轻的时候不进行功率因数校正,当负载较大时功率因数校正电路自动投入使用。此部分控制由图1中的比较器部分来实现。R10及R11是负载检测电阻。当负载较轻时,R10及R11上检测的信号输入给比较器,使其输出端为低电平,D2导通,给ENA(使能端)低电平使UC3854A/B封锁。在负载较大时ENA为高电平才让UC3854A/B工作。D3接到SS(软启动端),在负载轻时D3导通,使SS为低电平;当负载增大要求UC3854A/B工作时,SS端电位从零缓慢升高,控制输出脉冲占空比慢慢增大实现软启动。 2 DC/DC主电路及控制部分分析 2.1 DC/DC主电路拓扑 在大功率高频开关电源中,常用的主变换电路有推挽电路、半桥电路、全桥电路等[2]。其中推挽电路的开关器件少,输出功率大,但开关管承受电压高(为电源电压的2倍),且变压器有六个抽头,结构复杂;全桥电路开关管承受的电压不高,输出功率大,但是需要的开关器件多(4个),驱动电路复杂。半桥电路开关管承受的电压低,开关器件少,驱动简单。根据对各种拓扑方案的工程化实现难度,电气性能以及成本等指标的综合比较,本电源选用半桥式DC/DC变换器作为主电路。图2为大功率开关电源的主电路拓扑图。
上传时间: 2013-11-13
上传用户:ukuk