1. 最早截止时间优先EDF(Earliest DeadlineFirst)算法是非常著名的实时调度算法之一。在每一个新的就绪状态,调度器都是从那些已就绪但还没有完全处理完毕的任务中选择最早截止时间的任务,并将执行该任务所需的资源分配给它。在有新任务到来时,调度器必须立即计算EDF,排出新的定序,即正在运行的任务被剥夺,并且按照新任务的截止时间决定是否调度该新任务。如果新任务的最后期限早于被中断的当前任务,就立即处理新任务。按照EDF算法,被中断任务的处理将在稍后继续进行。
标签: DeadlineFirst Earliest EDF 算法
上传时间: 2016-08-09
上传用户:baiom
Java调度框架quartz与spring框架的结合例子,说明了spring配置文件声明,以及SimpleTriggerBean的用法。指定固定的时间间隔执行固定任务。例子中为每2秒打印一则消息,非常方便扩展。
上传时间: 2013-12-02
上传用户:924484786
设有两个周期性的实时任务A和B,任务A要求每20ms执行一次,执行时间为10ms 任务B要求每50ms执行一次,执行时间为25ms 试编一调度程序按最小松弛度优先算法对这两个任务进行调度并输出每次调度时被调入运行任务的状态: (任务名,所处周期数,调度时刻,运行持续时间)。
标签: 周期
上传时间: 2013-12-25
上传用户:924484786
μC/OS-II实验程序说明 软件版本:V1.0 日期:2005-05-25 多任务是指多个任务在操作系统的控制下同时运行,它的实现实际上是靠操作系统在 多个任务之间进行切换和调度。在多任务系统中,内核负责管理各个任务,即为每个任务 分配CPU时间,并且负责各任务之间的通讯。μC/OS-II操作系统最多可以支持64个任务。 每个任务的优先级不能相同,优先级数字越小,优先级越高。在μC/OS-II操作系统中, OSInit()创建了两个μC/OS-II的默认任务:一个是OS_TaskIdle,即CPU空闲任务,它拥有 最低的优先级,当有其他任务运行时此任务处于就绪态,没有其他任务时就是它在运行, 该任务是μC/OS-II必需的任务;另一个任务是OS_TaskStat,它每隔一段时间就做一些统
上传时间: 2017-05-31
上传用户:gaojiao1999
进程的调度,对任务的执行进行跟踪实现,是操作系统的实现
上传时间: 2014-06-18
上传用户:kiklkook
Keil 自带的 RTX51—Tiny 系统有这样几个缺点:1、非占先式任 务调度,这样系统的实时性就很难保证 2、提供的系统服务太少, 只有 wait 与 signal。而 RTX51—Tiny 的优点是:1、Keil 公司自己开 发的,使用_task_关键字区别每个任务,这样可以使得被不同任务调 用的不同函数即使没有相互调用,他们的局部变量也不会相互覆盖。 免去了在 SmallRTOS 中需要手动制止函数间局部变量的相互覆盖。 2、内核小。整个 RTX51--Tiny 完整编译只需 900B 的空间。
上传时间: 2014-10-14
上传用户:zuozuo1215
SPI接口实险,动态LED数据管显示实验。 1、程序通过SPI接口输出数据到HC595芯片驱动LED数据管简单显示。 2、动态调度由片内定时器1中断产生,中断周期为5mS。 3、内部1 M晶振,程序采用单任务方式,软件延时。 4、进行此实验请插上JP1的所有8个短路块,JP6(SPI_EN)短路块。
上传时间: 2013-06-30
上传用户:gokk
随着我国国民经济的高速发展,国内高速公路、城市道路、停车场建设越来越多,对交通控制、安全管理的要求也日益提高,智能交通系统( IntelligentTransportation Systems,简称ITS)已成为当前交通管理发展的主要方向,而车牌识别系统(License Plate Recognition System,简称LPRS)技术作为智能交通系统的核心,起着举足轻重的作用,可以被广泛地应用于高速公路自动收费(ElectronicToll Collection,简称ETC)、停车场安全管理、被盗车辆的追踪、车流统计等。 目前,车牌识别系统大多都是基于PC平台的,其优势是实现容易,但是成本高、实时性不强、稳定性不高等缺点使其不能广泛推广。为了克服以上的缺点,且满足识别速度和识别率的要求,本文在原有车牌识别硬件系统设计的基础上做了一定的改进(原系统在图像采集、接口通信、系统稳定、脱机工作等方面存在一定问题),与团队成员一起设计出了新的车牌识别硬件系统,采用单DSP+FPGA和双DSP+FPGA双板子的方式来共同实现(本人负责单DSP+FPGA的原理图和PCB绘制,另一成员负责双DSP+FPGA的原理图和PCB绘制)。 本文所涉及的该车牌硬件系统,主要工作由以下几个部分组成: 1.团队共同完成了新车牌识别系统的硬件设计,采用两个板子实现。其中,本人负责单DSP+FPGA板子绘制。 2.团队一起完成了整个系统的硬件电路调试。主要分为如下模块进行调试:电源,DSP,FPGA,SAA7113H视频解码器,LCD液晶显示和UART接口等。 3.负责完成了整个系统的DSP应用程序设计。采用DSP/BIOS操作系统来构建系统的框架,添加了多个任务对象进行管理系统的调度;用CSL编写了DSP上的底层驱动:完成了车牌识别算法在DSP上的移植与优化。 4.参与完成了部分FPGA程序的开发,主要包括图像采集、存储、传输几个模块等。 最终,本系统实现了高效、快速的车牌识别,各模块工作稳定,能脱机实现图像采集、传输、识别、结果输出和显示为一体化的功能;为以后进行高性能的车牌识别算法开发提供了一个很好的硬件平台。
上传时间: 2013-04-24
上传用户:slforest
为适应组合导航计算机系统的微型化、高性能度的要求,拓宽导航计算机的应用领域,本文设计出一种基于浮点型DSP(TMS320C6713)和可编程逻辑阵列器件(FPGA: EP1C12N240C8)协同合作的导航计算机系统。 论文在阐述了组合导航计算机的特点和应用要求后,提出基于DSP和FPGA的组合导航计算机系统方案。该方案以DSP为导航解算处理器,由FPGA完成IMU信号的采集和缓存以及系统控制信号的整合;DSP通过EMIF接口实现和FPGA通信。在此基础上研究了各扩展通信接口、系统硬件原理图和PCB的开发,且在FPGA中使用调用IP核来实现FIR低通滤波数据处理机抖激光陀螺的机抖振动的影响。其次,详细阐述了利用TI公司的DSP集成开发环境和DSP/BIOS准实时操作系统开发多任务系统软件的具体方案。本文引入DSP/BIOS实时操作系统提供的多任务机制,将采集处理按照功能划分四个相对独立的任务,这些任务在DSP/BIOS的调度下,按照用户指定的优先级运行,大大提高系统的工作效率。最后给了DSP芯片Bootloader的制作方法。 导航计算机系统研制开发是软、硬件研究紧密结合的过程。在微型导航计算机系统方案建立的基础上,本文首先讨论了系统硬件整体设计和软件开发流程;其次针对导航计算机系统各个功能模块以及多项关键技术进行了设计与开发工作,涉及系统数据通信模块、模拟信号采集模块和数据存储模块;最后,对导航计算机系统进行了联合调试工作,并对各个模块进行了详细的功能测试与验证,完成了微型导航计算机系统的制作。 以DSP/FPGA作为导航计算机硬件平台的捷联式惯性导航实时数据系统能够满足系统所要求的高精度、实时性、稳定性要求,适应了其高性能、低成本、低功耗的发展方向。
上传时间: 2013-04-24
上传用户:lishuoshi1996
数据采集处理技术是现代信号处理的基础,广泛应用于雷达、声纳、软件无线电、瞬态信号测试等领域。随着信息科学的飞速发展,人们面临的信号处理任务越来越繁重,对数据采集处理系统的要求也越来越高。近年来FPGA由于其设计灵活性、更强的适应性及可重构性,结合SDRAM的高速、大容量、价格优势,在设计高速实时数据采集系统时受到了广泛的关注。 本课题重点研究了基于FPGA与DDR2-SDRAM的高速实时数据采集系统的设计与实现技术,为需要大容量存储器的系统设计提供了新的思路。在深入研究了DDR2-SDRAM器件的基本构造与工作原理的基础上,结合成熟的商业化IP核,提出了基于FPGA与DDR2-SDRAM的高速实时数据采集系统的设计方案,并从总体设计构想到各逻辑细节实现都进行了详细描述。根据DDR2-SDRAM的特点,选择合适的内存调度方案,采用Verilog HDL语言设计实现了该高速实时数据采集系统,并对系统功能进行验证与分析,结果表明本设计完全能够满足系统的性能指标。
上传时间: 2013-06-24
上传用户:wangrong